Relative importance of H2 and H2S as energy sources for primary production in geothermal springs.

Appl Environ Microbiol

Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA.

Published: September 2008

Geothermal waters contain numerous potential electron donors capable of supporting chemolithotrophy-based primary production. Thermodynamic predictions of energy yields for specific electron donor and acceptor pairs in such systems are available, although direct assessments of these predictions are rare. This study assessed the relative importance of dissolved H(2) and H(2)S as energy sources for the support of chemolithotrophic metabolism in an acidic geothermal spring in Yellowstone National Park. H(2)S and H(2) concentration gradients were observed in the outflow channel, and vertical H(2)S and O(2) gradients were evident within the microbial mat. H(2)S levels and microbial consumption rates were approximately three orders of magnitude greater than those of H(2). Hydrogenobaculum-like organisms dominated the bacterial component of the microbial community, and isolates representing three distinct 16S rRNA gene phylotypes (phylotype = 100% identity) were isolated and characterized. Within a phylotype, O(2) requirements varied, as did energy source utilization: some isolates could grow only with H(2)S, some only with H(2), while others could utilize either as an energy source. These metabolic phenotypes were consistent with in situ geochemical conditions measured using aqueous chemical analysis and in-field measurements made by using gas chromatography and microelectrodes. Pure-culture experiments with an isolate that could utilize H(2)S and H(2) and that represented the dominant phylotype (70% of the PCR clones) showed that H(2)S and H(2) were used simultaneously, without evidence of induction or catabolite repression, and at relative rate differences comparable to those measured in ex situ field assays. Under in situ-relevant concentrations, growth of this isolate with H(2)S was better than that with H(2). The major conclusions drawn from this study are that phylogeny may not necessarily be reliable for predicting physiology and that H(2)S can dominate over H(2) as an energy source in terms of availability, apparent in situ consumption rates, and growth-supporting energy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2547044PMC
http://dx.doi.org/10.1128/AEM.00852-08DOI Listing

Publication Analysis

Top Keywords

energy source
12
h2s
9
h2s energy
8
energy sources
8
primary production
8
consumption rates
8
energy
7
relative h2s
4
sources primary
4
production geothermal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!