Aims: To evaluate the feasibility and diagnostic performance of high spatial resolution myocardial perfusion cardiac magnetic resonance (perfusion-CMR).

Methods And Results: Fifty-four patients underwent adenosine stress perfusion-CMR. An in-plane spatial resolution of 1.4 × 1.4 mm(2) was achieved by using 5× k-space and time sensitivity encoding (k-t SENSE). Perfusion was visually graded for 16 left ventricular and two right ventricular (RV) segments on a scale from 0 = normal to 3 = abnormal, yielding a perfusion score of 0-54. Diagnostic accuracy of the perfusion score to detect coronary artery stenosis of >50% on quantitative coronary angiography was determined. Sources and extent of image artefacts were documented. Two studies (4%) were non-diagnostic because of k-t SENSE-related and breathing artefacts. Endocardial dark rim artefacts if present were small (average width 1.6 mm). Analysis by receiver-operating characteristics yielded an area under the curve for detection of coronary stenosis of 0.85 [95% confidence interval (CI) 0.75-0.95] for all patients and 0.82 (95% CI 0.65-0.94) and 0.87 (95% CI 0.75-0.99) for patients with single and multi-vessel disease, respectively. Seventy-four of 102 (72%) RV segments could be analysed.

Conclusion: High spatial resolution perfusion-CMR is feasible in a clinical population, yields high accuracy to detect single and multi-vessel coronary artery disease, minimizes artefacts and may permit the assessment of RV perfusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2519247PMC
http://dx.doi.org/10.1093/eurheartj/ehn297DOI Listing

Publication Analysis

Top Keywords

spatial resolution
16
high spatial
12
coronary artery
12
resolution myocardial
8
myocardial perfusion
8
perfusion cardiac
8
cardiac magnetic
8
magnetic resonance
8
detection coronary
8
artery disease
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!