Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae.

Metab Eng

Department of Chemical and Biological Engineering-Molecular Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96 Göteborg, Sweden.

Published: September 2008

The non-ethylene producing yeast, Saccharomyces cerevisiae, was transformed into an ethylene producer by introducing the ethylene forming enzyme from the plant pathogenic bacterium Pseudomonas syringae. Cultivation of the metabolically engineered strain was performed in well-controlled bioreactors as aerobic batch cultures with an on-line monitoring of ethylene production. The highest productivity was obtained during the respiro-fermentative growth on glucose but there was also a significant rate of formation during the subsequent phase of ethanol respiration. Furthermore, investigations were performed whether substitution of the original nitrogen source, NH(4)(+), for glutamate could improve productivity and yield of ethylene even more. The rationale being that one of the substrates for the enzyme is 2-oxoglutarate and this compound can be formed from glutamate in a single reaction. Indeed, there was a substantial improvement in the rate of production and the final yield of ethylene was almost three times higher when NH(4)(+) was replaced by glutamate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2008.06.006DOI Listing

Publication Analysis

Top Keywords

ethylene production
8
yeast saccharomyces
8
saccharomyces cerevisiae
8
yield ethylene
8
ethylene
6
production metabolic
4
metabolic engineering
4
engineering yeast
4
cerevisiae non-ethylene
4
non-ethylene producing
4

Similar Publications

Compositions of ethylene glycol dicyclopentenyl ether methacrylate (EGDEMA), a vegetable oil based alkyl methacrylate (C13MA), and furfuryl methacrylate (FMA) were terpolymerized for dual-crosslinked networks with tailored mechanical and thermal properties. Specifically, initiators for continuous activator regeneration (ICAR) atom transfer radical polymerization (ATRP) afforded materials with tailored glass transition temperature ( ) and incorporation of furan and norbornene functionalities within a single chain. The terpolymer with high furan and norbornene functionality (Ter2: = 0.

View Article and Find Full Text PDF

Study on Carbon Dioxide Capture Using Ternary Betaine-Based Deep Eutectic Solvents.

ACS Omega

December 2024

Key Laboratory of Metallurgical Engineering and Process of Energy Saving of Guizhou Province, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, P.R. China.

The application of existing ternary betaine (Be)-based deep eutectic solvents (DESs) faces inevitable limitations due to the low regenerability and water absorption capability of the DESs. In this study, three ternary Be-based DESs with different molar ratios were prepared by adding the promoter diethanolamine (DEA) to the binary system of Be and ethylene glycol (EG). The effects of DEA, temperature, and flow rate on CO absorption by the Be-based DESs were then investigated.

View Article and Find Full Text PDF

Ethylene is an important plant hormone whose production relies on the action of key enzymes, one of which is 1-aminocyclopropane-1-carboxylate synthase (ACS). There are three classes of ACS, which are all partially regulated by degradation through the ubiquitin-proteasome system (UPS), which regulates ethylene production. Arabidopsis has a single class III ACS, ACS7, but although it is known to be degraded by the 26S proteasome, the UPS proteins involved are poorly characterised.

View Article and Find Full Text PDF

An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.

View Article and Find Full Text PDF

Spermatogenesis is one of the most complex processes of cell differentiation and its failure is a major cause of male infertility. Therefore, a proper model that recapitulates spermatogenesis in vitro has been long sought out for basic and clinical research. Testis organ culture using the gas-liquid interphase method has been shown to support spermatogenesis in mice and rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!