Epidemiological evidence indicates that prolonged lifetime exposure to estrogen is associated with elevated breast cancer risk in women. Oxidative stress and estrogen receptor-associated proliferative changes are suggested to play important roles in estrogen-induced breast carcinogenesis. In the present study, we investigated changes in breast morphology and oxidative stress following estrogen exposure. Female ACI rats were treated with 17beta-estradiol (E(2), 3 mg, s.c.) for either 7, 15, 120 or 240 days. Animals were euthanized, tissues were excised, and portions of the tissues were either fixed in 10% buffered formalin or snap-frozen in liquid nitrogen. Paraffin-embedded tissues were examined for histopathologic changes. Proliferative changes appeared in the breast after 7 days of E(2) exposure. Atypical ductal proliferation and significant reduction in stromal fat were observed following 120 days of E(2) exposure. Both in situ and invasive carcinomas were observed in the majority of the mammary glands from rats treated with E(2) for 240 days. Palpable breast tumors were observed in 82% of E(2)-treated rats after 228 days, with the first palpable tumor appearing after 128 days. No morphological changes were observed in the livers, kidneys, lungs or brains of rats treated with E(2) for 240 days compared to controls. Furthermore, 8-isoprostane (8-isoPGF(2alpha)) levels as well as the activities of antioxidant enzymes, such as glutathione peroxidase, superoxide dismutase and catalase, were quantified in the breast tissues of rats treated with E(2) for 7, 15, 120 and 240 days and compared to activity levels in age-matched controls. 8-isoPGF(2alpha) levels displayed time-dependent increases upon E(2) treatment and were significantly higher than control levels at the 15, 120 and 240 day time-points. 8-isoPGF(2alpha) observed in E(2)-induced mammary tumors were significantly higher than levels found in control mammary tissue from age-matched animals. Similarly, alterations in glutathione peroxidase and superoxide dismutase activities were detected in both mammary and tumor tissue from E(2)-treated rats. Taken together, our data reveal that proliferative changes in the breast tissue of ACI rats are associated with increases in 8-isoPGF(2alpha) formation as well as changes in the activities of antioxidant enzymes. These oxidative changes appear to be a function of E(2) exposure and occur prior to tumor development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593408PMC
http://dx.doi.org/10.1016/j.taap.2008.06.007DOI Listing

Publication Analysis

Top Keywords

rats treated
16
240 days
16
oxidative stress
12
proliferative changes
12
120 240
12
estrogen-induced breast
8
breast cancer
8
breast
8
breast morphology
8
morphology oxidative
8

Similar Publications

This research seeks to address the gap in past studies by examining the role of the Nrf2 (nuclear factor erythroid 2-related factor 2) and HO-1 (heme oxygenase-1) signaling pathways in hypoxia and the potential effects of alpha-pinene on these factors. Wistar rats were divided into 7 experimental groups (n = 7): 1) control, 2 and 3) groups receiving alpha-pinene 5 and 10 mg/kg (i.p.

View Article and Find Full Text PDF

Keratin/chitosan film promotes wound healing in rats with combined radiation-wound injury.

J Mater Sci Mater Med

January 2025

Department of Nuclear Medicine, Chongqing University Cancer Hospital, No. 181 HanYu St, Shapingba District, Chongqing, 400030, PR China.

Human hair keratin, a natural protein derived from human hair, has emerged prominently in the field of wound repair, showcasing its unique regenerative capabilities and extensive application potential. However, it is a challenge for the keratin to efficiently therapy the impaired wound healing, such as combined radiation-wound injury. Here, we report a keratin/chitosan (KRT/CS) film for skin repair of chronic wounds in in rats with combined radiation-wound injury.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.

View Article and Find Full Text PDF

Ameliorative impact of sacubitril/valsartan on paraquat-induced acute lung injury: role of Nrf2 and TLR4/NF-κB signaling pathway.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Herbicides such as paraquat (PQ) are frequently utilized particularly in developing nations. The present research concentrated on the pulmonary lesions triggered by PQ and the beneficial effect of the angiotensin receptor neprilysin inhibitor (ARNI), sacubitril/valsartan, against such pulmonary damage. Five groups of rats were established: control, ARNI, PQ (10 mg/kg), ARNI 68 + PQ, and ARNI 34 + PQ.

View Article and Find Full Text PDF

Modulation of placental angiogenesis by metformin in a rat model of gestational diabetes.

Histochem Cell Biol

January 2025

Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.

Gestational diabetes mellitus (GDM) significantly disrupts placental structure and function, leading to complications such as intrauterine growth restriction (IUGR) and preeclampsia. This study aimed to investigate the effects of GDM on placental histology, angiogenesis, and oxidative stress, as well as evaluate metformin's protective role in mitigating these changes. A total of 60 pregnant Sprague-Dawley rats were divided into four groups: control, metformin-treated, GDM, and GDM with metformin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!