We describe the use of methoxypolyethylene glycol-poly(lactide-co-glycolide) nanoparticles as a delivery system for recombinant hepatitis B surface antigen (HBsAg). Evaluation of the stability and release kinetics of nanoencapsulated HBsAg in vitro in serum revealed an initial burst effect and a subsequent slower release of the antigen. Importantly the antigenicity was not destroyed by the encapsulation process, because upon release it was able to react with an anti-HBs antibody. Bone marrow-derived dendritic cells showed efficient uptake of the nanoparticle vaccine as visualized by confocal imaging. To determine whether nano-encapsulated HBsAg was capable of eliciting an immune response in the absence of an adjuvant, mice were immunized with the nanoparticle vaccine or with nonencapsulated recombinant HBsAg. In mice immunized with the nanoparticle vaccine, anti-HBs antibodies were detected at significantly earlier time points than in mice immunized with the nonencapsulated recombinant HBsAg.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2008.05.006DOI Listing

Publication Analysis

Top Keywords

nanoparticle vaccine
12
mice immunized
12
nanoparticles delivery
8
recombinant hepatitis
8
immunized nanoparticle
8
nonencapsulated recombinant
8
recombinant hbsag
8
hbsag
5
novel nanoparticles
4
recombinant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!