Systemically administered human recombinant erythropoietin (EPO) may have the potential to reduce the cognitive and behavioural symptoms of mechanical brain injury. In a series of studies we address this possibility. Previously, we studied the effects of EPO given to fimbria-fornix transected rats at the moment of injury. We have found that such treatment improves substantially the posttraumatic acquisition of allocentric place learning tasks administered in a water maze and in an 8-arm radial maze as well as a spatial delayed alternation task administered in a T-maze. It is, however, essential also to evaluate this clinically important ability of EPO after other types of mechanical brain injury. Consequently, we presently studied the effects of similarly administered EPO in rats subjected to bilateral subpial aspiration of the anteromedial prefrontal cortex as well as control operated rats, respectively. We evaluated the posttraumatic behavioural/cognitive abilities of these animals in a spatial delayed alternation task performed in a T-maze. Administration of EPO to the prefrontally ablated rats was associated with a reduction of the lesion-associated behavioural impairment--while such an impairment was clearly seen in the saline injected prefrontally ablated group. In sham operated rats administration of EPO did not influence the task acquisition significantly. The results of the present study confirm our previous demonstrations that EPO is able to reduce the behavioural/cognitive consequences of mechanical brain injury. This ability is emphasized by its relative independence on the type of lesion as well as the neural structure affected.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2008.05.005DOI Listing

Publication Analysis

Top Keywords

spatial delayed
12
delayed alternation
12
mechanical brain
12
brain injury
12
rats subjected
8
prefrontal cortex
8
studied effects
8
alternation task
8
operated rats
8
administration epo
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!