Since the prognosis of patients with Philadelphia chromosome positive acute lymphoblastic leukaemia (Ph+ ALL) still remains poor, new relapse prevention strategies are needed. We evaluated the pre-immunization of mice with DNA-based vaccines subsequently challenged by the syngeneic Ph+ ALL cell line BM185. Ballistic transfer of minimalistic immunogenically defined gene expression (MIDGE) vectors encoding a BCR-ABLp185 fusion specific peptide or GM-CSF were used for in vivo transfection. DNA-based double stem-loop immunomodulators (dSLIM) were used as immune adjuvant. We present survival and functional data that DNA-based vaccination with BCR-ABLp185 fusion specific sequences, GM-CSF and dSLIM leads to an anti-tumor effect in mice challenged with a lethal Ph+ ALL dose and this effect depends on leukaemia-specific sequences.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vaccine.2008.06.094DOI Listing

Publication Analysis

Top Keywords

dna-based vaccination
8
acute lymphoblastic
8
lymphoblastic leukaemia
8
bcr-ablp185 fusion
8
fusion specific
8
anti-tumor dna-based
4
vaccination dslim
4
dslim immunomodulatory
4
immunomodulatory molecules
4
molecules mice
4

Similar Publications

INO-4800 represents a DNA-based vaccine encoding the spike protein of SARS-CoV-2. This phase 2 trial evaluated the immunogenicity and safety of INO-4800 as a primary vaccination series in adults. We conducted a randomized, observer-blind, placebo-controlled phase 2 trial of intradermal injection of INO-4800 in both healthy adults and elderly individuals.

View Article and Find Full Text PDF

Advances in nucleic acid-based cancer vaccines.

J Biomed Sci

January 2025

National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan.

Nucleic acid vaccines have emerged as crucial advancements in vaccine technology, particularly highlighted by the global response to the COVID-19 pandemic. The widespread administration of mRNA vaccines against COVID-19 to billions globally marks a significant milestone. Furthermore, the approval of an mRNA vaccine for Respiratory Syncytial Virus (RSV) this year underscores the versatility of this technology.

View Article and Find Full Text PDF

Cervical cancer ranks as the fourth most common cancer among women globally, posing a significant mortality risk. Persistent infection with high-risk human papillomavirus (HPV) is the primary instigator of cervical cancer development, often alongside coinfection with other viruses, precipitating various malignancies. This study aimed to explore recent biotechnological advances in understanding HPV infection dynamics, host interactions, and its role in oncogenesis.

View Article and Find Full Text PDF

Lipid nanoparticles deliver DNA-encoded biologics and induce potent protective immunity.

Mol Cancer

January 2025

Department of Medicine, Section of Epidemiology and Population Sciences, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.

Lipid nanoparticles (LNPs) for mRNA delivery have advanced significantly, but LNP-mediated DNA delivery still faces clinical challenges. This study compared various LNP formulations for delivering DNA-encoded biologics, assessing their expression efficacy and the protective immunity generated by LNP-encapsulated DNA in different models. The LNP formulation used in Moderna's Spikevax mRNA vaccine (LNP-M) demonstrated a stable nanoparticle structure, high expression efficiency, and low toxicity.

View Article and Find Full Text PDF

Cervical cancer ranks as the fourth most common cancer among women globally, posing a significant mortality risk. Persistent infection with high-risk human papillomavirus (HPV) is the primary instigator of cervical cancer development, often alongside co-infection with other viruses, precipitating various malignancies. This study aimed to explore recent biotechnological advances in understanding HPV infection dynamics, host interactions, and its role in oncogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!