This work investigated the spectrum-effect relationships between HPLC fingerprints and the anti-bacterial activities of EtOAc extracts from Radix Isatidis. Fingerprints of EtOAc extracts of Radix Isatidis from various sources were established by a High-Performance Liquid Chromatography. The process of Escherichia coli (E. coli) growth affected by EtOAc extracts was monitored using a Thermal Activity Monitor (TAM) Air Isothermal Calorimeter by microcalorimetry. By analyzing the power-time curves, quantitative parameters, such as growth rate constant k, maximum heat-production rate P(m), appearance time t and total heat-production Q were obtained to characterize the interactions of E. coli and the EtOAc extracts from Radix Isatidis. The HPLC fingerprints were investigated using hierarchical clustering analysis. The main thermo-kinetic parameters from the power-time curves were analyzed using principal component analysis. The spectrum-effect relationships between the HPLC fingerprints and anti-bacterial activities were analyzed with multivariant correlation analysis. Close correlation existed between the spectrum-effect relationships of the EtOAc extracts. Salicylic acid in the HPLC fingerprints might be one of the anti-bacterial components. This work provides a general model of the combination of HPLC and microcalorimetry to study the spectrum-effect relationships of EtOAc extracts from Radix Isatidis, which can be used to search for principal components of Radix Isatidis on bioactivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jchromb.2008.06.053 | DOI Listing |
Poult Sci
November 2024
College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin 150036, PR China. Electronic address:
Natural drugs possess exceptional pharmacological properties, yet their development is often hindered by a lack of clarity regarding the mechanisms of their pharmacological actions. Building on our previous research, we employed a co-infection model with Mycoplasma gallisepticum (MG) and Escherichia coli (E. coli) to investigate the pharmacological action of Radix Isatidis Mixtures (RIM).
View Article and Find Full Text PDFSci Rep
September 2024
College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
Int J Biol Macromol
October 2024
College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China; Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China. Electronic address:
Interstitial nephritis is the primary cause of mortality in IBV-infected chickens. Our previous research has demonstrated that Radix Isatidis polysaccharide (RIP) could alleviate this form of interstitial nephritis. To explore the mechanism, SPF chickens and chicken embryonic kidney cells (CEKs) were pre-treated with RIP and subsequently infected with QX-genotype IBV strain.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
July 2024
The pinoresinol-lariciresinol reductase (PLR), a crucial enzyme in the biosynthesis of lignans in plants, catalyzes a two-step reaction to produce lariciresinol and secoisolariciresinol. Lignans such as lariciresinol are the effective components of traditional Chinese medicine Radix Isatidis in exerting antiviral activity. In order to study the function of the key enzyme PLR in the biosynthesis of lariciresinol in , the original plant of Radix Isatidis, was cloned from , with a full length of 954 bp, encoding 317 amino acids.
View Article and Find Full Text PDFFront Microbiol
May 2024
Hubei Key Lab for Processing and Application of Catalytic Materials, LiShizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, China.
White rot fungi possess superior infiltrability and biodegradability on lignocellulosic substrates, allowing them to form tailored microstructures which are conducive to efficient carbonization and chemical activation. The present research employed white rot fungus pretreatment as a viable approach for preparing porous carbon from Banlangen residues. The resultant F-A-BLGR-PC prepared by pretreating Banlangen residues with white rot fungi followed by carbonization and activation has a hierarchical porous structure with a high specific surface area of 898 m g, which is 43.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!