Inflammation stimulates the expression of PCSK9.

Biochem Biophys Res Commun

Metabolism Section (111F), Department of Veterans Affairs Medical Center, 4150 Clement Street, University of California San Francisco, San Francisco, CA 94121, USA.

Published: September 2008

Inflammation induces marked changes in lipid and lipoprotein metabolism. Proprotein convertase subtilisin kexin 9 (PCSK9) plays an important role in regulating LDL receptor degradation. Here, we demonstrate that LPS decreases hepatic LDL receptor protein but at the same time hepatic LDL receptor mRNA levels are not decreased. We therefore explored the effect of LPS on PCSK9 expression. LPS results in a marked increase in hepatic PCSK9 mRNA levels (4h 2.5-fold increase; 38h 12.5-fold increase). The increase in PCSK9 is a sensitive response with 1microg LPS inducing a (1/2) maximal response. LPS also increased PCSK9 expression in the kidney. Finally, zymosan and turpentine, other treatments that induce inflammation, also stimulated hepatic expression of PCSK9. Thus, inflammation stimulates PCSK9 expression leading to increased LDL receptor degradation and decreasing LDL receptors thereby increasing serum LDL, which could have beneficial effects on host defense.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2571081PMC
http://dx.doi.org/10.1016/j.bbrc.2008.07.023DOI Listing

Publication Analysis

Top Keywords

ldl receptor
16
pcsk9 expression
12
inflammation stimulates
8
pcsk9
8
expression pcsk9
8
pcsk9 inflammation
8
receptor degradation
8
hepatic ldl
8
mrna levels
8
ldl
6

Similar Publications

Nanobodies (Nbs) hold great potential to replace conventional antibodies in various biomedical applications. However, conventional methods for their discovery can be time-consuming and expensive. We have developed a reliable protein selection strategy that combines magnetic activated cell sorting (MACS)-based screening of yeast surface display (YSD) libraries and functional ligand-binding identification by Tat-based recognition of associating proteins (FLI-TRAP) to isolate antigen-specific Nbs from synthetic libraries.

View Article and Find Full Text PDF

Promising LOX proteins for cartilage- targeting osteoarthritis therapy.

Pharmacol Res

January 2025

School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland. Electronic address:

Osteoarthritis (OA) is the most affected joint disease worldwide, touching millions of people every year. It is caused by a progressive degeneration of articular cartilage, causing pain and limited mobility. Among the pathways involved in cartilage homeostasis, "LOX" proteins (referring to three distinct protein families, very often confused in the literature) play a prominent role.

View Article and Find Full Text PDF

Background: Exogenous Cushing's syndrome, which results from prolonged glucocorticoid treatment, is associated with metabolic abnormalities. Previously, we reported the inhibitory effect of tonsil-derived mesenchymal stem cell conditioned medium (T-MSC CM) on glucocorticoid signal transduction. In this study, we investigated the therapeutic efficacy of T-MSCs in a mouse model of exogenous Cushing's syndrome.

View Article and Find Full Text PDF

Atahualpa is a rural village located in coastal Ecuador, a region that has been inhabited by people as early as 10,000 years ago. The traditional diet of their indigenous inhabitants is rich in oily fish and they have, therefore, served as a model for investigating the beneficial effects of such a diet. However, the genetic background of this population has not been studied.

View Article and Find Full Text PDF

Background: The low-density lipoprotein receptor () is essential for regulating intracellular cholesterol levels. Mutations in the gene can cause a increase in LDL cholesterol levels in the blood, elevating the vulnerability to cardiovascular disease (CVD). This study evaluated the correlation between the rs688 polymorphism and CVD risk in chronic kidney disease (CKD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!