A small subset of signal peptidase residues are perturbed by signal peptide binding.

Chem Biol Drug Des

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06552, USA.

Published: August 2008

Perturbations of the chemical shifts of a small subset of residues in the catalytically active domain of Escherichia coli signal peptidase I (SPase I) upon binding signal peptide suggest the contact surface on the enzyme for the substrate. SPase I, an integral membrane protein, is vital to preprotein transport in prokaryotic and eukaryotic secretory systems; it binds and proteolyses the N-terminal signal peptide of the preprotein, permitting folding and localization of the mature protein. Employing isotopically labeled C-terminal E. coli SPase I Delta2-75 and an unlabeled soluble synthetic alkaline phosphatase signal peptide, SPase I Delta2-75 was titrated with the signal peptide and 2D (1)H-(15)N heteronuclear single-quantum correlation nuclear magnetic resonance spectra revealed chemical shifts of specific enzyme residues sensitive to substrate binding. These residues were identified by 3D HNCACB, 3D CBCA(CO)NH, and 3D HN(CO) experiments. Residues Ile80, Glu82, Gln85, Ile86, Ser88, Gly89, Ser90, Met91, Leu95, Ile101, Gly109, Val132, Lys134, Asp142, Ile144, Lys145, and Thr234, alter conformation and are likely all in, or adjacent to, the substrate binding site. The remainder of the enzyme structure is unperturbed. Ramifications for conformational changes for substrate docking and catalysis are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2637466PMC
http://dx.doi.org/10.1111/j.1747-0285.2008.00685.xDOI Listing

Publication Analysis

Top Keywords

signal peptide
20
small subset
8
signal peptidase
8
chemical shifts
8
spase delta2-75
8
substrate binding
8
signal
7
residues
5
peptide
5
subset signal
4

Similar Publications

HLA-E: Immune Receptor Functional Mechanisms Revealed by Structural Studies.

Immunol Rev

January 2025

Nuffield Department of Medicine, Center for Immuno-Oncology, University of Oxford, Oxford, UK.

HLA-E is a nonclassical, nonpolymorphic, class Ib HLA molecule. Its primary function is to present a conserved nonamer peptide, termed VL9, derived from the signal sequence of classical MHC molecules to the NKG2x-CD94 receptors on NK cells and a subset of T lymphocytes. These receptors regulate the function of NK cells, and the importance of this role, which is conserved across mammalian species, probably accounts for the lack of genetic polymorphism.

View Article and Find Full Text PDF

CIROZ is dispensable in ancestral vertebrates but essential for left-right patterning in humans.

Am J Hum Genet

December 2024

Laboratory of Human Genetics & Therapeutics, Genome Institute of Singapore (GIS), A(∗)STAR, Singapore, Singapore; Laboratory of Human Genetics & Therapeutics, BESE, KAUST, Thuwal, Saudi Arabia; Department of Physiology, Cardiovascular Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. Electronic address:

Four genes-DAND5, PKD1L1, MMP21, and CIROP-form a genetic module that has specifically evolved in vertebrate species that harbor motile cilia in their left-right organizer (LRO). We find here that CIROZ (previously known as C1orf127) is also specifically expressed in the LRO of mice, frogs, and fish, where it encodes a protein with a signal peptide followed by 3 zona pellucida N domains, consistent with extracellular localization. We report 16 individuals from 10 families with bi-allelic CIROZ inactivation variants, which cause heterotaxy with congenital heart defects.

View Article and Find Full Text PDF

Epstein-Barr nuclear antigen 1 (EBNA1), a sequence-specific DNA binding protein of Epstein-Barr virus (EBV), is essential for viral genome replication and maintenance and is therefore an attractive target for the therapeutic intervention of EBV-associated cancers. Several EBNA1-specific inhibitors have demonstrated the ability to block EBNA1 function in vitro, but practical delivery strategies for these inhibitors in vivo are still lacking. Here, we report an intelligent hierarchical targeting theranostic nanosystem (denoted as mZGOCS@MnO-P5) that integrates an azide (N3) terminal dual-targeting peptide (N3-P5), a tumor microenvironment-responsive degradable MnO nanosheet, and a mesoporous ZnGaO:Cr, Sn near-infrared persistent luminescence (NIR-PL) nanosphere (mZGOCS).

View Article and Find Full Text PDF

Background: Clinicopathological studies of Alzheimer's disease (AD) have demonstrated that synaptic or neuronal loss and clinical cognitive decline do not reliably correlate with fibrillar amyloid burden. We created a transgenic mouse model overexpressing Dutch (E693Q) mutant human amyloid precursor protein (APP) driven by the pan-neuronal Thy1 promoter. Accumulation of APP carboxyl-terminal fragments was observed in the brains of these mice, which develop an impaired learning phenotype directly proportional to brain oAβ levels.

View Article and Find Full Text PDF

Background: Signal Peptide Peptidase-Like 2b (SPPL2b) is relevant for AD, being a brain-specific intramembrane protein involved in the cleavage of Alzheimer's disease (AD)-related proteins, such as BRI2, inflammatory-related proteins like CD74, TNFalpha, and Clec7a, and synaptic proteins Neuregulin-1 and VAMP 1-4. SPPL2b is specifically expressed in the hippocampus and cortex. The cleavage of TNFalpha by SPPL2b promotes the inflammatory pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!