Focal decreases of cortical GABAA receptor binding remote from the primary seizure focus: what do they indicate?

Epilepsia

Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan and Harper University Hospital, Detroit Medical Center, Wayne State University School of Medcine, Detroit, Michigan, USA.

Published: February 2009

Purpose: To determine the electroclinical significance and histopathological correlates of cortical gamma-aminobutyric acid(A)(GABA(A)) receptor abnormalities detected in and remote from human neocortical epileptic foci.

Methods: Cortical areas with decreased(11)C-flumazenil (FMZ) binding were objectively identified on positron emission tomography (PET) images and correlated to intracranial electroencephalography (EEG) findings, clinical seizure variables, histology findings, and surgical outcome in 20 patients (mean age, 9.9 years) with intractable partial epilepsy of neocortical origin and nonlocalizing magnetic resonance imaging (MRI).

Results: Focal decrease of cortical FMZ binding was detected in the lobe of seizure onset in 17 (85%) patients. Eleven patients (55%) had 17 remote cortical areas with decreased FMZ binding outside the lobe of seizure onset. Thirteen of those 16 (81%) of the 17 remote cortical regions that were covered by subdural EEG were around cortex showing rapid seizure spread on intracranial EEG. Remote FMZ PET abnormalities were associated with high seizure frequency and, when resected, showed gliosis in all six cases where material was available. Higher number of unresected cortical regions with decreased FMZ binding was associated with poorer surgical outcome.

Conclusions: Focal decreases of cortical GABA(A) receptor binding on PET may include cortical regions remote from the primary focus, particularly in patients with high seizure frequency, and these regions are commonly involved in rapid seizure propagation. Although these regions may not always need to be resected to achieve seizure freedom, a careful evaluation of cortex with decreased GABA(A) receptor binding prior to resection using intracranial EEG may facilitate optimal surgical outcome in patients with intractable neocortical epilepsy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2642902PMC
http://dx.doi.org/10.1111/j.1528-1167.2008.01721.xDOI Listing

Publication Analysis

Top Keywords

fmz binding
16
gabaa receptor
12
receptor binding
12
cortical regions
12
cortical
9
seizure
9
focal decreases
8
decreases cortical
8
cortical gabaa
8
remote primary
8

Similar Publications

PET imaging of GABA receptors in pancreatic islets by [C]flumazenil.

EJNMMI Res

December 2024

Department of Medical Cell Biology, Department of Medical Sciences, Science for Life Laboratory, Uppsala University, Box 571, 75123, Uppsala, Sweden.

Background: Type 1 diabetes (T1D) is an autoimmune disease characterized by a progressive β-cell destruction. There are no clinically established methods for quantifying endocrine cells of the pancreas and current knowledge is almost exclusively based on autopsy material and functional measurements. Based on the expression of the γ-aminobutyric acid A receptors (GABARs) in pancreatic islets and the fact that GABAR agonists are being explored as treatment for T1D, we hypothesized that the positron emission tomography (PET) tracer [C]flumazenil ([C]FMZ) could serve as a marker of the endocrine mass of the pancreas.

View Article and Find Full Text PDF

Importance: The chronic neuronal burden of traumatic brain injury (TBI) is not fully characterized by routine imaging, limiting understanding of the role of neuronal substrates in adverse outcomes.

Objective: To determine whether tissues that appear healthy on routine imaging can be investigated for selective neuronal loss using [11C]flumazenil (FMZ) positron emission tomography (PET) and to examine whether this neuronal loss is associated with long-term outcomes.

Design, Setting, And Participants: In this cross-sectional study, data were collected prospectively from 2 centers (University of Cambridge in the UK and Weill Cornell Medicine in the US) between September 1, 2004, and May 31, 2021.

View Article and Find Full Text PDF

Context: nanoKAZ is a compact luciferase that exhibits intense blue light emission when it catalyzes the substrate Furimazine (FMZ) as a luciferin, making it an excellent candidate as a reporter protein. However, the specific catalytic residues and mechanism of nanoKAZ have not been revealed. Recently, the structure of nanoKAZ was determined, and it was observed that the luminescent properties changed when FMZ analogs with naphthalene replacing benzene were used.

View Article and Find Full Text PDF

Background: Studies using animal experiments have shown secondary neuronal degeneration in the thalamus after cerebral infarction. Neuroimaging studies in humans have revealed changes in imaging parameters in the thalamus, remote to the infarction. However, few studies have directly demonstrated neuronal changes in the thalamus in vivo.

View Article and Find Full Text PDF

Illustration of Altered Dopaminergic and GABAergic Systems in Early Parkinson's Disease.

Front Neurol

May 2022

Department of Biofunctional Imaging, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.

Background: Changes in γ-aminobutyric acid (GABA) function are noted in patients with Parkinson's disease (PD) who have some non-motor impairments. However, dopamine-related GABA function and GABA-related cognitive changes are still unclear.

Methods: Thirteen drug-naive early-stage PD patients underwent a series of PET scans with [C]flumazenil(FMZ) and [C]CFT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!