Infection with Helicobacter pylori induces various gastric diseases, including ulceration, gastritis and neoplasia. As H. pylori-induced cellular mechanisms leading to these disease states are widely unclear, we analysed the phosphoproteome of H. pylori-infected gastric epithelial cells. Phosphoproteins from infected cells were enriched using affinity columns and analysed by two-dimensional gel electrophoresis and mass spectrometry. Eleven novel phosphoproteins that showed differentially regulated phosphorylation levels during H. pylori infection were identified. Interestingly, the identified proteins were actin-binding, transport and folding, RNA/DNA-binding or cancer-associated proteins. We analysed functions of one identified H. pylori-regulated candidate, the vasodilator-stimulated phosphoprotein (VASP). H. pylori induced VASP phosphorylation at residues Ser157, Ser239 and Thr278, which was enhanced by the bacterial oncogene cytotoxin-associated gene A. Overexpression of a phosphorylation-resistant VASP mutant efficiently blocked host cell elongation. We identified cGMP-dependent protein kinase G-mediated Ser239 and Thr278 phosphorylation of VASP as a crucial event in H. pylori-dependent host cell elongation. These results suggest that phosphorylated VASP could be a novel target candidate for therapeutic intervention in H. pylori-related gastric diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-5822.2008.01207.xDOI Listing

Publication Analysis

Top Keywords

gastric epithelial
8
epithelial cells
8
gastric diseases
8
ser239 thr278
8
host cell
8
cell elongation
8
vasp
6
differential phosphoproteome
4
phosphoproteome profiling
4
profiling reveals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!