AI Article Synopsis

  • Ribosomes change shape a lot when they help make proteins, and this is connected to the changes in the ribosomal RNA (rRNA).
  • Scientists tested special pieces of DNA that matched parts of rRNA to see how they interacted with tRNA (the helper molecule).
  • They found that different parts of the ribosomes and tRNA interact in specific ways during the process of making proteins.

Article Abstract

A ribosome undergoes significant conformational changes during elongation of polypeptide chain that are correlated with structural changes of rRNAs. We tested nine different antisense oligodeoxynucleotides complementary to the selected, highly conserved sequences of Lupinus luteus 26S rRNA that are engaged in the interactions with tRNA molecules. The ribosomes were converted either to pre- or to posttranslocational states, with or without prehybridized oligonucleotides, using tRNA or mini-tRNA molecules. The activity of those ribosomes was tested via the so-called binding assay. We observed well-defined structural changes of ribosome's conformation during different steps of the elongation cycle of protein biosynthesis. In this article, we present that (i) before and after translocation, fragments of domain V between helices H70/H71 and H74/H89 do not have to interact with nucleotides 72-76 of the acceptor arm of A-site tRNA; (ii) helix H69 does not have to interact with DHU arm of tRNA in positions 25 and 26 after forming the peptide bond, but before translocation; (iii) helices H69 and H70 interact weakly with nucleotides 11, 12, 25, and 26 of A-site tRNA before forming a peptide bond in the ribosome; (iv) interactions between helices H80, H93 and single-stranded region between helices H92 and H93 and CCAend of P-site tRNA are necessary at all steps of elongation cycle; and (v) before and after translocation, helix H89 does not have to interact with nucleotides in positions 64-65 and 50-53 of A-site tRNA TPsiC arm.

Download full-text PDF

Source
http://dx.doi.org/10.1089/oli.2008.0127DOI Listing

Publication Analysis

Top Keywords

a-site trna
12
26s rrna
8
structural changes
8
steps elongation
8
elongation cycle
8
interact nucleotides
8
forming peptide
8
peptide bond
8
trna
7
antisense oligonucleotides
4

Similar Publications

Fragment-based screening is an efficient method for early-stage drug discovery. In this study, we aimed to create a fragment library optimized for producing high hit rates against RNA targets. RNA has historically been an underexplored target, but recent research suggests potential for optimizing small molecule libraries for RNA binding.

View Article and Find Full Text PDF

Transfer RNAs (tRNAs) serve as a dictionary for the ribosome translating the genetic message from mRNA into a polypeptide chain. In addition to this canonical role, tRNAs are involved in other processes such as programmed stop codon readthrough (SC-RT). There, tRNAs with near-cognate anticodons to stop codons must outcompete release factors and incorporate into the ribosomal decoding center to prevent termination and allow translation to continue.

View Article and Find Full Text PDF

Ribozymes that catalyze site-specific RNA modification have recently gained increasing interest for their ability to mimic methyltransferase enzymes and for their application to install molecular tags. Recently, we reported SAMURI as a site-specific alkyltransferase ribozyme using S-adenosylmethionine (SAM) or a stabilized analog to transfer a methyl or propargyl group to N of an adenosine. Here, we report the crystal structures of SAMURI in the postcatalytic state.

View Article and Find Full Text PDF

Readthrough of a translation termination codon is regulated by ribosomal A site recognition and insertion of near-cognate tRNAs. Small molecules exist that mediate incorporation of amino acids at the stop codon and production of full-length, often functional protein but defining the actual amino acid that is incorporated remains a challenging area. Herein, we report on the development a human cell model that can be used to determine whether rules can be developed using mass spectrometry that define the type of amino acid that is placed at a premature termination codon (PTC) during readthrough mediated by an aminoglycoside.

View Article and Find Full Text PDF

The paenilamicins are a group of hybrid nonribosomal peptide-polyketide compounds produced by the honey bee pathogen Paenibacillus larvae that display activity against Gram-positive pathogens, such as Staphylococcus aureus. While paenilamicins have been shown to inhibit protein synthesis, their mechanism of action has remained unclear. Here we determine structures of paenilamicin PamB2-stalled ribosomes, revealing a unique binding site on the small 30S subunit located between the A- and P-site transfer RNAs (tRNAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!