Antimicrobial photodynamic action on dentin using a light-emitting diode light source.

Photomed Laser Surg

Faculdade de Odontologia de Araraquara, Universidade do Estado de São Paulo, Araraquara, SP, Brazil.

Published: August 2008

Objective: The aim of this study was the evaluation of two different photosensitizers activated by red light emitted by light-emitting diodes (LEDs) in the decontamination of carious bovine dentin.

Materials And Methods: Fifteen bovine incisors were used to obtain dentin samples which were immersed in brain-heart infusion culture medium supplemented with 1% glucose, 2% sucrose, and 1% young primary culture of Lactobacillus acidophilus 10(8) CFU/mL and Streptococcus mutans 10(8) CFU/mL for caries induction. Three different concentrations of the Photogem solution, a hematoporphyrin derivative (1, 2, and 3 mg/mL) and two different concentrations of toluidine blue O (TBO), a basic dye (0.025 and 0.1 mg/mL) were used. To activate the photosensitizers two different light exposure times were used: 60 sec and 120 sec, corresponding respectively to the doses of 24 J/cm(2) and 48 J/cm(2).

Results: After counting the numbers of CFU per milligram of carious dentin, we observed that the use of LED energy in association with Photogem or TBO was effective for bacterial reduction in carious dentin, and that the greatest effect on S. mutans and L. acidophilus was obtained with TBO at 0.1 mg/mL and a dose of 48 J/cm(2). It was also observed that the overall toxicity of TBO was higher than that of Photogem, and that the phototoxicity of TBO was higher than that of Photogem.

Conclusion: Based on our data we propose a mathematical model for the photodynamic effect when different photosensitizer concentrations and light doses are used.

Download full-text PDF

Source
http://dx.doi.org/10.1089/pho.2007.2149DOI Listing

Publication Analysis

Top Keywords

108 cfu/ml
8
carious dentin
8
tbo higher
8
tbo
5
antimicrobial photodynamic
4
photodynamic action
4
dentin
4
action dentin
4
dentin light-emitting
4
light-emitting diode
4

Similar Publications

Trace detection of S. aureus cells in food samples via RCA-assisted SERS signal amplification with core-shell nanoprobe.

Talanta

December 2024

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China. Electronic address:

Staphylococcus aureus (S. aureus) has been identified as a indicator of food contamination. In this study, a sensitive and accurate biosensor strategy for S.

View Article and Find Full Text PDF

First Report of Causing Bacterial Blight on Glossy Abelia.

Plant Dis

December 2024

Clemson University - EREC, Plant and Environmental Sciences, 64 Research Road, Blackville, South Carolina, United States, 29817;

Glossy abelia (Abelia × grandiflora) is an evergreen ornamental shrub used in landscaping globally. From Jun. 2023 to Feb.

View Article and Find Full Text PDF

Introduction: Hyperuricemia (HUA) refers to the presence of excess uric acid (UA) in the blood, which increases the risk of chronic kidney disease and gout. Probiotics have the potential to alleviate HUA.

Methods: This study established a hyperuricemia model using (), and studied the anti-hyperuricemia activity and potential mechanisms of BC99 () at different concentrations (10 CFU/mL BC99, 10 CFU/mL BC99).

View Article and Find Full Text PDF

Towards fostering a more sustainable food production system in face of the climate change challenge, alternative protein meat-substitute products that are plant-based and free of animal by-products have been gaining attractions from both food manufacturers and consumers. With these so-called plant-based meat analogues (PBMAs) becoming increasingly available at supermarkets, there is very little known about their microbial properties. In this short report, we characterized the bacterial composition of raw plant-based ground meat imitation retail products using 16S rRNA gene amplicon sequencing.

View Article and Find Full Text PDF

Optimization of the large-scale production for Erwinia amylovora bacteriophages.

Microb Cell Fact

December 2024

Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.

Background: Fire blight, caused by Erwinia amylovora, poses a significant threat to global agriculture, with antibiotic-resistant strains necessitating alternative solutions such as phage therapy. Scaling phage therapy to an industrial level requires efficient mass-production methods, particularly in optimizing the seed culture process. In this study, we investigated large-scale E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!