A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Distinct intervertebral disc cell populations adopt similar phenotypes in three-dimensional culture. | LitMetric

Distinct intervertebral disc cell populations adopt similar phenotypes in three-dimensional culture.

Tissue Eng Part A

Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6321, USA.

Published: December 2008

Tissue engineering strategies have the potential to improve upon current techniques for intervertebral disc repair. However, determining a suitable biomaterial scaffold for disc regeneration is difficult due to the complex fibrocartilaginous structure of the tissue. In this study, cells isolated from three distinct regions of the intervertebral disc, the outer and inner annulus fibrosus and nucleus pulposus, were expanded and seeded on resorbable polyester fiber meshes and encapsulated in calcium crosslinked alginate hydrogels, both chosen to approximate the native tissue architecture. Three-dimensional (3D) constructs were cultured for 14 days in vitro and evaluated histologically and quantitatively for gene expression and production of types I and II collagen and proteoglycans. During monolayer expansion, the cell populations maintained their distinct phenotypic morphology and gene expression profiles. However, after 14 days in 3D culture, there were no significant differences in morphology, gene expression, or protein production between all three cell populations grown in either alginate or polyester fiber meshes. The results of this study indicate that the culture environment may have a greater impact on cellular behavior than the intrinsic origin of the cells, and suggest that only a single-cell type may be required for intervertebral disc regenerative therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2809660PMC
http://dx.doi.org/10.1089/ten.tea.2007.0337DOI Listing

Publication Analysis

Top Keywords

intervertebral disc
16
cell populations
12
gene expression
12
polyester fiber
8
fiber meshes
8
morphology gene
8
disc
5
distinct intervertebral
4
disc cell
4
populations adopt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!