AI Article Synopsis

  • Carbon nanotubes (CNTs) can cause serious lung issues like inflammation and genetic damage in cells, as shown in experimental studies.
  • Researchers modified CNTs through heating and grinding to understand how these changes impacted their toxic effects, testing them on rats and lung cells.
  • Results revealed that heating reduced CNT toxicity, but grinding them restored their harmful effects, suggesting that defects in their structure play a key role in their toxicity.

Article Abstract

Experimental studies indicate that carbon nanotubes (CNTs) have the potential to induce adverse pulmonary effects, including alveolitis, fibrosis, and genotoxicity in epithelial cells. Here, we explored the physicochemical determinants of these toxic responses with progressively and selectively modified CNTs: ground multiwall CNTs modified by heating at 600 degrees C (loss of oxygenated carbon functionalities and reduction of oxidized metals) or at 2400 degrees C (annealing of structural defects and elimination of metals) and by grinding the material that had been heated at 2400 degrees C before (introduction of structural defects in a metal-deprived framework). The CNTs were administered intratracheally (2 mg/rat) to Wistar rats to evaluate the short-term response (3 days) in bronchoalveolar lavage fluid (LDH, proteins, cellular infiltration, IL-1beta, and TNF-alpha). The long-term (60 days) lung response was assessed biochemically by measuring the lung hydroxyproline content and histologically. In vitro experiments were also performed on rat lung epithelial cells to assess the genotoxic potential of the modified CNTs with the cytokinesis block micronucleus assay. The results show that the acute pulmonary toxicity and the genotoxicity of CNT were reduced upon heating but restored upon grinding, indicating that the intrinsic toxicity of CNT is mainly mediated by the presence of defective sites in their carbon framework.

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx800101pDOI Listing

Publication Analysis

Top Keywords

structural defects
12
carbon nanotubes
8
epithelial cells
8
modified cnts
8
2400 degrees
8
cnts
5
defects play
4
play major
4
major role
4
role acute
4

Similar Publications

STRUCTURAL AND FUNCTIONAL BONE FEATURES IN CHILDREN RESIDING IN THE RADIOLOGICALLY CONTAMINATED TERRITORIES OF UKRAINE.

Probl Radiac Med Radiobiol

December 2024

State Institution «National Research Center of Radiation Medicine, Hematology and Oncology of the National Academy of Medical Sciences of Ukraine», 53 Yuriia Illienka Str., Kyiv, 04050, Ukraine.

Objective: Evaluation of structural features and metabolic/biochemical abnormalities of the bone tissue and relevant regulation patterns in children, residing in the radiologically contaminated territories (RCT).

Materials And Methods: Children (n = 148) aged 7 to 18 years old were involved in the study. Bone mineral density (BMD) is given in 3 grades according to the mean square deviation values, namely Grade I - standard (n = 75),Grade II - reduced (n = 45) and Grade III - very low one (n = 28).

View Article and Find Full Text PDF

Objective: To determine the structure of abnormalities of bone tissue and substantiate the management tactics inacute lymphoblastic leukemia (ALL) pediatric patients and in children with no oncohematological disorders, livingin radiologically contaminated territories (RCT).

Materials And Methods: Children (n = 220) living in RCT were the study participants i.e.

View Article and Find Full Text PDF

Objective: To investigate the frequency of epileptiform discharges associated with self-limited focal epilepsy (EDSelFEC) in children who have undergone a hemispherotomy and to evaluate whether patients with coexistence of EDSelFEC and structural hemispheric epilepsies differ from patients without coexistence of EDSelFEC and whether there are differences between the two groups with regard to preoperative management and postoperative outcome.

Methods: Data on 131 children who underwent a hemispherotomy between January 1999 and January 2015 were retrieved from the Epilepsy center's epilepsy surgery database. Children with EDSelFEC were compared with children without EDSelFEC with respect to epileptogenic hemispheric pathology, family history, age at epilepsy onset, timing of surgery, lesion laterality, preoperative cognitive function, response to sodium channel blocker antiepileptic medication, and surgical outcome.

View Article and Find Full Text PDF

Advances in the Development of Auricular Cartilage Bioimplants.

Tissue Eng Part B Rev

December 2024

Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico.

Conditions such as congenital abnormalities, cancer, infections, and trauma can severely impact the integrity of the auricular cartilage, resulting in the need for a replacement structure. Current implants, carved from the patient's rib, involve multiple surgeries and carry risks of adverse events such as contamination, rejection, and reabsorption. Tissue engineering aims to develop lifelong auricular bioimplants using different methods, different cell types, growth factors and maintenance media formulations, and scaffolding materials compatible with the host.

View Article and Find Full Text PDF

Graphene Functionalization by O, H, and Ar Plasma Treatments for Improved NH Gas Sensing.

ACS Appl Mater Interfaces

December 2024

Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.

Graphene-based materials have gained attention for their promise in various applications owing to their two-dimensional structure. Functionalizing the graphene surface can help realize materials with noble properties. In this study, graphene was functionalized by plasma treatment in O, H, and Ar environments, and the effects on the NH gas-sensing performance were evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!