The majority of soybeans planted in the United States are resistant to glyphosate due to introduction of a gene encoding for a glyphosate-insensitive 5-enolypyruvylshikimate-3-phosphate synthase. Gene expression profiling was conducted using cDNA microarrays to address questions related to potential secondary effects of glyphosate. When glyphosate-sensitive plants were treated with glyphosate, 3, 170, and 311 genes were identified as having different transcript levels at 1, 4, and 24 h post-treatment (hpt), respectively. Differentially expressed genes were classified into functional categories, and their possible roles in response to glyphosate are briefly discussed. Gene expression profiling of glyphosate-resistant plants treated with glyphosate indicated that the plants were marginally affected at 1 hpt and then quickly adjusted to glyphosate treatment. Ten, four, and four genes were identified as differentially expressed at 1, 4, and 24 hpt. When gene expression profiles of cotyledons from developing seed were compared between the near-isogenic resistant and sensitive lines, two genes were identified as significantly differentially expressed out of 27000, which was less than the empirical false-discovery rate determined from a control experiment. Quantitative real-time reverse-transcribed Polymerase Chain Reaction was conducted on selected genes and yielded results consistent with those from the microarrays. Collectively, these data indicate that there are no major transcriptomic changes associated with currently used glyphosate-resistant soybean.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf801254eDOI Listing

Publication Analysis

Top Keywords

gene expression
12
genes identified
12
differentially expressed
12
response glyphosate
8
expression profiling
8
plants treated
8
treated glyphosate
8
identified differentially
8
glyphosate
7
genes
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!