AI Article Synopsis

Article Abstract

Dynamic microtubules are necessary for proper mitotic spindle assembly and chromosome segregation during mitosis. Members of the kinesin superfamily of molecular motor proteins are important to spindle function. Of particular interest is the Kinesin-13 family member MCAK, which acts to regulate microtubule dynamics during spindle assembly and to ensure proper attachments of chromosomes to spindle microtubules. The unique ability of MCAK to regulate microtubule dynamics makes it a potential target for development of new drugs that alter spindle function. Here, we knocked down MCAK via RNAi in normal and malignant cell lines and found that the two tested malignant cell lines were acutely sensitive to MCAK knockdown, while the tested normal cells were less sensitive. In addition, we looked at the effect of combining MCAK knockdown and drug treatment with paclitaxel or vinblastine to identify spindle assembly defects. We found that MCAK knockdown increased the morphological defects of the microtubule cytoskeleton in HeLa cells caused by anti-microtubule drugs. Our studies support the idea that MCAK would be a good target for new chemotherapeutic development and may be particularly useful in combination therapies with currently available anti-microtubule agents.

Download full-text PDF

Source
http://dx.doi.org/10.4161/cc.7.14.6239DOI Listing

Publication Analysis

Top Keywords

spindle assembly
12
mcak knockdown
12
anti-microtubule agents
8
mcak
8
spindle function
8
regulate microtubule
8
microtubule dynamics
8
malignant cell
8
cell lines
8
spindle
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!