A class of multivalent protein binders was designed to overcome the limitations of low-affinity therapeutic antibodies. These binders, termed "collabodies," use a triplex-forming collagen-like peptide to drive the trimerization of a heterologous target-binding domain. Different forms of collabody, consisting of the human single-chain variable fragment (scFv) fused to either the N or C terminus of the collagen-like peptide scaffold (Gly-Pro-Pro)(10), were stably expressed as soluble secretory proteins in mammalian cells. The collabody consisting of scFv fused to the N terminus of collagen scaffold is present as a homotrimer, whereas it exhibited a mixture of trimer and interchain disulfide-bonded hexamer when cysteine residues were introduced and flanked the scaffold. The collagenous motif in collabody is prolyl-hydroxylated, with remarkable thermal and serum stabilities. The collabody erb_scFv-Col bound to the extracellular domain of epidermal growth factor receptor with a binding strength approximately 20- and 1000-fold stronger than the bivalent and monovalent counterparts, respectively. The trimeric collagen scaffold does not compromise the functionality of the binding moieties of parental immunoglobulin G (IgG); therefore, it could be applied to fuse other protein molecules to acquire significantly improved targeting-binding strengths.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1096/fj.08-111484 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!