Functional chimeras of the phosphodiesterase 5 and 10 tandem GAF domains.

J Biol Chem

Pharmazeutisches Institut, Fakultät für Chemie und Pharmazie, Morgenstelle, Universität Tübingen, 72076 Tübingen, Germany. Electronic address:

Published: September 2008

The tandem GAF domain of hPDE10A uses cAMP as an allosteric ligand (Gross-Langenhoff, M., Hofbauer, K., Weber, J., Schultz, A., and Schultz, J. E. (2006) J. Biol. Chem. 281, 2841-2846). We used a two-pronged approach to study how discrimination of ligand is achieved in human (h)PDE10A and how domain selection in the phosphodiesterase GAF tandems is determined. First, we examined which functional groups of cAMP are responsible for purine ring discrimination. Changes at the C-6 ring position (removal of the amino group; chloride substitution) and at the N-1 ring position reduced stimulation efficacy by 80%, i.e. marking those positions as decisive for nucleotide discrimination. Second, we generated a GAF tandem chimera that consisted of the cGMP-binding GAF-A unit from hPDE5A1, which signals through cGMP in PDE5, and the GAF-B from hPDE10A1, which signals through cAMP in PDE10. Stimulation of the reporter enzyme exclusively was through the GAF-B domain of hPDE10A1 (EC(50) = 7 microm cAMP) as shown by respective point mutations. The PDE5 GAF-A domain in the chimera did not signal, and its function was reduced to a strictly structural role. Signaling was independent of the origin of the N terminus. Generating 10 additional PDE5/10 tandem GAF chimeras surprisingly demonstrated that the length-conserved linker in GAF tandems between GAF-A and GAF-B played an unforeseen decisive role in intramolecular signaling. Swapping the linker sections between PDE5 and PDE10 GAF tandem domains abrogated signaling completely pointing to specific domain interactions within GAF tandems, which are not visible in the available crystal structures with bound ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M800230200DOI Listing

Publication Analysis

Top Keywords

tandem gaf
12
gaf tandems
12
gaf
8
ring position
8
gaf tandem
8
tandem
5
domain
5
functional chimeras
4
chimeras phosphodiesterase
4
phosphodiesterase tandem
4

Similar Publications

Previous studies have identified three families of knotted phytochrome photoreceptors in cyanobacteria. We describe a fourth type: 'hybrid' phytochromes with putative bilin-binding cysteine residues in both their N-terminal 'knot' extensions and cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domains, which we designate as dual-cysteine bacteriophytochromes (DCBs). Recombinant expression of DCBs in Escherichia coli yields photoactive phycocyanobilin (PCB) adducts with red/far-red photocycles similar to those of the GAF-Cys-containing cyanobacterial phytochromes (Cph1s).

View Article and Find Full Text PDF

Efficient indexing and querying of annotations in a pangenome graph.

bioRxiv

October 2024

IRSD - Digestive Health Research Institute, University of Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.

The current reference genome is the backbone of diverse and rich annotations. Simple text formats, like VCF or BED, have been widely adopted and helped the critical exchange of genomic information. There is a dire need for tools and formats enabling pangenomic annotation to facilitate such enrichment of pangenomic references.

View Article and Find Full Text PDF
Article Synopsis
  • An error grid is a tool that helps compare glucose levels measured by devices to see if they are correct and to identify any risks.
  • Experts created a new error grid called the DTS Error Grid that works for both blood glucose monitors (BGMs) and continuous glucose monitors (CGMs), organizing accuracy into five risk zones.
  • The results showed that the DTS Error Grid provides a clearer picture of how accurate these devices are and includes a separate matrix to evaluate how well CGMs track glucose trends over time.
View Article and Find Full Text PDF

Combined NMR and MS-based metabonomics and real-time PCR analyses reveal dynamic metabolic changes of Ganoderma lucidum during fruiting body growing.

Food Res Int

March 2024

State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; Optics Valley Laboratory, Wuhan 430074, China. Electronic address:

Ganoderma lucidum (G. lucidum) is a rare medicinal fungus with various beneficial properties. One of its main components, ganoderic acids (GAs), are important triterpenoids known for their sedative and analgesic, hepatoprotective, and anti-tumor activities.

View Article and Find Full Text PDF

Diabetes Technology Society assembled a panel of clinician experts in diabetology, cardiology, clinical chemistry, nephrology, and primary care to review the current evidence on biomarker screening of people with diabetes (PWD) for heart failure (HF), who are, by definition, at risk for HF (Stage A HF). This consensus report reviews features of HF in PWD from the perspectives of 1) epidemiology, 2) classification of stages, 3) pathophysiology, 4) biomarkers for diagnosing, 5) biomarker assays, 6) diagnostic accuracy of biomarkers, 7) benefits of biomarker screening, 8) consensus recommendations for biomarker screening, 9) stratification of Stage B HF, 10) echocardiographic screening, 11) management of Stage A and Stage B HF, and 12) future directions. The Diabetes Technology Society panel recommends 1) biomarker screening with one of two circulating natriuretic peptides (B-type natriuretic peptide or N-terminal prohormone of B-type natriuretic peptide), 2) beginning screening five years following diagnosis of type 1 diabetes (T1D) and at the diagnosis of type 2 diabetes (T2D), 3) beginning routine screening no earlier than at age 30 years for T1D (irrespective of age of diagnosis) and at any age for T2D, 4) screening annually, and 5) testing any time of day.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!