Matrix metalloprotease (MMP) activity is increased in the postpartum vagina of wild-type (WT) animals. This degradative activity is also accompanied by a burst in elastic fiber synthesis and assembly. The mechanisms that precipitate these changes are unclear. The goals of this study were to determine how vaginal distention (such as in parturition) affects elastic fiber homeostasis in the vaginal wall and the potential significance of these changes in the pathogenesis of pelvic organ prolapse. Vaginal distention with a balloon simulating parturition resulted in increased MMP-2 and MMP-9 activity in the vaginal wall of nonpregnant and pregnant animals. This was accompanied by visible fragmented and disrupted elastic fibers in the vaginal wall. In nonpregnant animals, the abundant amounts of tropoelastin and fibulin-5 in the vagina were not increased further by distention. In contrast, in pregnant animals, the suppressed levels of both proteins were increased 3-fold after vaginal distention. Distention performed in fibulin-5-deficient (Fbln5(-/-)) mice with defective elastic fiber synthesis and assembly induced accelerated pelvic organ prolapse, which never recovered. We conclude that, in pregnant mice, vaginal distention results in increased protease activity in the vaginal wall but also increased synthesis of proteins important for elastic fiber assembly. Distention may thereby contribute to the burst of elastic fiber synthesis in the postpartum vagina. The finding that distention results in accelerated pelvic organ prolapse in Fbln5(-/-) animals, but not in WT, indicates that elastic fiber synthesis is crucial for recovery of the vaginal wall from distention-induced increases in vaginal protease activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3774207PMC
http://dx.doi.org/10.1152/ajpregu.90447.2008DOI Listing

Publication Analysis

Top Keywords

elastic fiber
28
vaginal wall
24
vaginal distention
20
fiber synthesis
20
pelvic organ
16
organ prolapse
16
vaginal
12
elastic
8
wall potential
8
pathogenesis pelvic
8

Similar Publications

Purpose: Shear wave elastography (SWE) provides a means for adding information about the mechanical properties of tissues to a diagnostic ultrasound examination. It is important to understand the physics and methods by which the measurements are made to aid interpretation of the results as they relate to disease processes.

Methods: The components of how ultrasound is used to generate shear waves and make measurements of the induced motion are reviewed.

View Article and Find Full Text PDF

A functional cardiac patch promotes cardiac repair by modulating the CCR2 cardiac-resident macrophage niche and their cell crosstalk.

Cell Rep Med

January 2025

Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China; School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China. Electronic address:

C-C chemokine receptor type 2 (CCR2) cardiac-resident macrophages (CCR2 cRMs) are known to promote cardiac repair after myocardial infarction (MI). However, the substantial depletion and slow recovery of CCR2 cRMs pose significant barriers in cardiac recovery. Here, we construct a functional conductive cardiac patch (CCP) that can provide exogenously elastic conductive microenvironment and induce endogenously reparative microenvironment mediated by CCR2 cRMs for MI repair.

View Article and Find Full Text PDF

Hybrid additive manufacturing for Zn-Mg casting for biomedical application.

In Vitro Model

December 2024

Department of Industrial and Manufacturing Engineering, Pennsylvania State University, State College, University Park, PA USA.

Zinc (Zn) and its alloys have been the focus of recent materials and manufacturing research for orthopaedic implants due to their favorable characteristics including desirable mechanical strength, biodegradability, and biocompatibility. In this research, a novel process involving additive manufacturing (AM) augmented casting was employed to fabricate zinc-magnesium (Zn-0.8 Mg) artifacts with surface lattices composed of triply periodic minimal surfaces (TPMS), specifically gyroid.

View Article and Find Full Text PDF

The human body consists of many different soft biological tissues that exhibit diverse microstructures and functions and experience diverse loading conditions. Yet, under many conditions, the mechanical behaviour of these tissues can be described well with similar nonlinearly elastic or inelastic constitutive relations, both in health and some diseases. Such constitutive relations are essential for performing nonlinear stress analyses, which in turn are critical for understanding physiology, pathophysiology and even clinical interventions, including surgery.

View Article and Find Full Text PDF

An open channel exposed core microstructured fiber is designed and fabricated for pressure and refractive index sensing. The core is on a flat platform surrounded by the cladding on which there is an open gap that allows the surrounding medium to contact the core. Due to the specially designed microstructure, the external pressure compresses the fiber core and causes changes of birefringence because of the photo-elastic effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!