Background And Aims: Transglutaminases are tissue enzymes involved in different neuronal processes including maintenance and signalling. However, their up-regulation elicited by a variety of noxae contributes to neurodegeneration. This study tested the hypothesis that experimental inflammation evoked transglutaminase up-regulation in myenteric neurons and that this event had an impact on neuronal survival.
Methods: Rats with or without trinitro-benzene-sulphonic acid-induced colitis were used. One week after colitis induction, longitudinal muscle-myenteric plexus preparations were obtained from left colon to assess tissue-transglutaminase activity, protein and mRNA expression. Double labelling immunofluorescence using antibodies to neuron-specific enolase and transglutaminase was performed to identify myenteric neurons expressing transglutaminase. Additional sets of experiments evaluated the involvement of transglutaminase in the apoptotic process of cultured myenteric neurons.
Results: Compared to controls, rats with colitis showed several tranglutaminase/neuron-specific enolase positive myenteric neurons. Western blot analysis and RT-PCR confirmed that in rats with colitis, the increased neuronal transglutaminase-immunoreactivity was associated with an increased enzyme expression. Similarly, transglutaminase activity was significantly higher than in controls (1100+/-280 m U/g vs. 725+/-119 m U/g, p<0.05). In cultured myenteric neurons incubation with the specific transglutaminase inducer, retinoic acid, significantly increased neuronal apoptosis, whereas the presence of cystamine significantly reduced the number of apoptotic neurons.
Conclusions: Experimental colitis evoked transglutaminase up-regulation and increased activity in myenteric neurons. This mechanism enhances neuronal susceptibility to apoptosis and could contribute to neuropathic changes during gut inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dld.2008.06.004 | DOI Listing |
Cell Mol Gastroenterol Hepatol
January 2025
Dept of Physiology & Cell Biology, University of Nevada Reno School of Medicine, Reno, NV. Electronic address:
Background And Aims: Gastrointestinal motility persists when peripheral cholinergic signaling is blocked genetically or pharmacologically, and a recent study suggests nitric oxide drives propagating neurogenic contractions.
Methods: To determine the neuronal substrates that underlie these contractions, we measured contractile-associated movements together with calcium responses of cholinergic or nitrergic myenteric neurons in un-paralyzed ex vivo preparations of whole mouse colon. We chose to look at these two subpopulations because they encompass nearly all myenteric neurons.
Sci Transl Med
January 2025
Department of Pediatrics, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA.
Children with neurodegenerative disease often have debilitating gastrointestinal symptoms. We hypothesized that this may be due at least in part to underappreciated degeneration of neurons in the enteric nervous system (ENS), the master regulator of bowel function. To test this hypothesis, we evaluated mouse models of neuronal ceroid lipofuscinosis type 1 and 2 (CLN1 and CLN2 disease, respectively), neurodegenerative lysosomal storage disorders caused by deficiencies in palmitoyl protein thioesterase-1 and tripeptidyl peptidase-1, respectively.
View Article and Find Full Text PDFGastro Hep Adv
August 2024
Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
Background And Aims: The enteric nervous system independently controls gastrointestinal function including motility, which is primarily mediated by the myenteric plexus, therefore also playing a crucial role in functional intestinal disorders. Live recordings from human myenteric neurons proved to be challenging due to technical difficulties. Using the neuroimaging technique, we are able to record human colonic myenteric neuronal activity and investigate their functional properties in a large cohort of patients.
View Article and Find Full Text PDFJ Vet Res
December 2024
Institute of Biology, College of Natural Sciences, University of Rzeszów, 35-310 Rzeszów, Poland.
Introduction: The enteric nervous system (ENS) in the wall of the gastrointestinal tract is complex and comprises many neurons, which are differentiated in terms of structure, function and neurochemistry. Neuregulin 1 (NRG 1) is one of the neuronal factors synthesised in the ENS about the distribution and functions of which relatively little is known. The present study is the first description of the distribution of NRG 1 in the ENS in various segments of the porcine small intestine.
View Article and Find Full Text PDFNeurogastroenterol Motil
January 2025
Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
Background: Intestinal ischemia affects the functioning of the Enteric Nervous System (ENS). Pannexin-1 channel participates in cell communication and extracellular signaling. Probenecid (PB) is a pannexin-1 channel inhibitor, which can be a potential treatment for intestinal ischemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!