The migration of oligodendrocyte precursor cells (OPCs) is modulated by secreted molecules in their environment and by cell-cell and matrix-cell interactions. Here, we ask whether membrane-anchored guidance cues, such as the ephrin ligands and their Eph receptors, participate in the control of OPC migration in the optic nerve. We postulate that EphA and EphB receptors, which are expressed on axons of retinal ganglion cells, interact with ephrins on the surface of OPCs. We show the expression of ephrinA5, ephrinB2 and ephrinB3 in the migrating OPCs of the optic nerve as well as in the diencephalic sites from where they originate. In addition, we demonstrate that coated EphB2-Fc receptors, which are specific for ephrinB2/B3 ligands, induce dramatic changes in the contact and migratory properties of OPCs, indicating that axonal EphB receptors activate ephrinB signaling in OPCs.Based on these findings, we propose that OPCs are characterized by an ephrin code, and that Eph-ephrin interactions between axons and OPCs control the distribution of OPCs in the optic axonal tracts, and the progress and arrest of their migration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S1740925X04000109 | DOI Listing |
Cells
January 2025
Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea.
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli.
View Article and Find Full Text PDFInt J Clin Exp Pathol
December 2024
Department of Experimental Medicine, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNGHA) Riyadh 11481, Saudi Arabia.
Background: Multiple sclerosis (MS) is a chronic, immune-mediated neurological disorder in which the immune system mistakenly attacks the myelin sheath, affecting the communication between the brain and the rest of the body.
Objective: This study investigated the prophylactic use of peptide inhibitor of trans-endothelial migration (PEPITEM), a novel peptide, in alleviating experimental autoimmune encephalomyelitis (EAE), a mouse model for Multiple Sclerosis (MS).
Methods: Female C57BL/6 female mice were assigned to the control, untreated EAE, or PEPITEM group.
Neurochem Int
January 2025
Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China. Electronic address:
The term "circadian rhythm" refers to the 24-h oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis.
View Article and Find Full Text PDFJ Neurochem
January 2025
Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Neuron-glia interactions are fundamental to the development and function of the nervous system. During development, glia, including astrocytes, microglia, and oligodendrocytes, influence neuronal differentiation and migration, synapse formation and refinement, and myelination. In the mature brain, glia are crucial for maintaining neural homeostasis, modulating synaptic activity, and supporting metabolic functions.
View Article and Find Full Text PDFAgeing Res Rev
December 2024
Department of Life Sciences and Public Health, Section of Histology and Embryology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, Rome, Italy. Electronic address:
The central nervous system (CNS) is wired by a complex network of integrated glial and neuronal signals, which is critical for its development and homeostasis. In this context, glia-glia communication is a complex and dynamic process that is essential for ensuring optimal CNS function. Semaphorins, which include secreted and transmembrane molecules, and their receptors, mainly found in the plexin and neuropilin families, are expressed in a wide range of cell types, including glia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!