The action of three functional rockers, namely the heel, ankle and forefoot rocker, assist the progression of the leg over the supporting foot. The purpose of this case series was to analyze the occurrence of foot rockers during gait in three children with cerebral palsy (CP) who had undergone the tendo-Achilles lengthening (TAL), procedure followed by a clinic- or home-based intervention and in one child with CP without history of surgery. Self-selected gait was video-recorded in a laboratory during six testing sessions at half-year intervals rendering a 3 year period of observation. One child had pre- and post-surgical gait data and the other two had post surgical data only. Sagittal plane knee angular velocity, as well as foot to ground positions, and foot rocker occurrence were analyzed. In a child with history of CP, and without history of surgery, mean angular velocities of the 1st, 2nd and 3rd foot rocker were 3.7, 0.57 and 6.67 rad/s, respectively, and the step length and cadence were normal. In children who underwent TAL the 1st and 2nd rocker was absent, as the initial contact of the foot with the ground was either with foot-flat or forefoot. The mean velocity of the 3rd rocker in children who underwent TAL was lower by approximately 50-80% than that of the nonsurgical case. Furthermore, the characteristic pattern of the knee joint to foot-floor position during gait was not observed in these cases. Foot rocker analysis identified children with abnormal gait characteristics. Following surgery these gait characteristics remained abnormal.

Download full-text PDF

Source

Publication Analysis

Top Keywords

foot rocker
16
gait characteristics
12
foot
8
child history
8
history surgery
8
foot ground
8
1st 2nd
8
children underwent
8
underwent tal
8
gait
7

Similar Publications

A valid novel ground reaction force distribution algorithm to determine midfoot kinetics of gait with a single force plate.

Gait Posture

December 2024

Marquette University, 1250 W. Wisconsin Ave, Milwaukee, WI 53233, United States; Shriners Children's Chicago, 2211 N. Oak Park Ave, Chicago, IL 60707, United States.

Background: Understanding midfoot joint kinetics is valuable for improved treatment of foot pathologies. Segmental foot kinetics cannot currently be obtained in a standard gait lab without the use of multiple force plates or a pedobarographic plate overlaid with a force plate due to the single ground reaction force (GRF) vector.

Research Question: Can an algorithm be created to distribute the GRF into multiple segmental vectors that will allow for calculation of accurate midfoot and ankle moments?

Methods: 20 pediatric subjects (10 typically developing, 10 with foot pathology) underwent multi-segment foot gait analysis using the Milwaukee Foot Model.

View Article and Find Full Text PDF

Background: Energy Storage and Return (ESAR) prosthetic feet provide improved walking when compared with previous designs. However, it may not mimic the unimpaired smooth and progressive movement of the foot on the floor (foot rollover).

Objective: To characterize the temporal foot rollover of participants with unilateral transtibial amputation using an ESAR prosthetic foot.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the effects of three types of therapeutic offloading diabetic shoes (prefabricated, relasting, and double rocker-modified) on peak plantar pressure in individuals with Charcot foot deformity, a complication of diabetes involving neuropathy.
  • - Involving 15 participants with Charcot neuropathy, the research measures plantar pressure during walking to assess how different shoes impact pressure distribution in the forefoot, midfoot, and hindfoot.
  • - Results show that while the double rocker-modified shoe increased forefoot pressure slightly, it significantly reduced midfoot pressure compared to other shoes, indicating varied effects on plantar pressure distribution.
View Article and Find Full Text PDF

A single computational model to simulate the three foot-rocker mechanisms of the gait cycle.

Sci Rep

November 2024

Biomedical Engineering Department, Universidad de los Andes, Bogotá D.C, Colombia.

The use of computational models of the human foot based on finite element analysis offers a promising alternative for understanding the biomechanical internal changes of this structure. However, the evaluation of dynamic scenarios has been challenging. This research aims to design a computational model that accurately simulates foot biomechanics during the stance period of the gait cycle in healthy and flatfoot scenarios.

View Article and Find Full Text PDF

Forefoot disorders are prevalent in the general population, with an incidence between 2 and 20%. Among them, lesser toe deformities (hammer, claw, and mallet toes) are frequent disorders, and their conservative management is often not adequately considered but usually attempted before surgical indication. Among conservative treatments, shoe modifications and the application of orthoses may, in most cases, alleviate symptoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!