The peculiarities of the interaction between cell membrane lipids and triterpene glycosides from holothurians Apostichopus japonicus S. and Cucumaria japonica (holotoxin A1 and cucumarioside A2-2, respectively) were studied in comparison with plant saponins from Quillaja saponaria, known as hemolytic, adjuvant, and structure-forming components of immunostimulating complexes. Similar to Quillaja saponins, the sea glycosides, holotoxin A1 and cucumarioside A2-2 were shown to possess a high hemolytic activity (2.6 and 3 microg/ml, respectively) and sterol-depending membranotropic effect mediated by the formation of nonbilayer sterol-lipid-glycoside complexes. At the same time, cucumarioside A2-2 bound exogenic cholesterol only in the presence of membrane lipids, such as phosphatidylcholine or monogalactosyldiacylglycerol, in contrast to Quillaja saponins and holotoxin A1, which bound cholesterol in the molar ratios 1:2 and 1:8, respectively. Moreover, in all cases, tree-component complexes containing cholesterol, lipid, and glycoside exhibited a lower hemolytic activity compared with two-component sterol-glycoside complexes. It was concluded that the hydrophobic medium of cell membranes performs a potentiative role in the effective interaction between triterpene glycosides and "sterol receptors". A method for decreasing the toxicity of membranotropic holothurian glycosides possessing the immunomodulating properties was suggested.
Download full-text PDF |
Source |
---|
Neurochem Res
January 2025
Department of Pharmacology, Central University of Punjab, Ghudda, Bhatinda, Punjab, 151401, India.
Antipsychotic medications are used to treat a psychological condition called 'Schizophrenia'. However, its long-term administration causes irregular involuntary motor movements, targeting the orofacial regions. Glycyrrhizic acid (GA) is a naturally occurring triterpene saponin glycoside obtained from the roots of the Glycyrrhiza glabra (liquorice) plant and well known for its antioxidant, antiapoptotic and neuroprotective abilities.
View Article and Find Full Text PDFMolecules
December 2024
Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China.
A comprehensive phytochemical investigation of the twigs/leaves and flower buds of , a rare deciduous shrub native to China, led to the isolation of 39 structurally diverse compounds. These compounds include 11 iridoid glycosides (- and -), 20 triterpenoids (, , and -), and 8 phenylpropanoids (-). Among these, amabiliosides A () and B () represent previously undescribed bis-iridoid glycosides, while amabiliosides C () and D () feature a unique bis-iridoid-monoterpenoid indole alkaloid scaffold with a tetrahydro--carboline-5-carboxylic acid moiety.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 561113, China.
Astragalus membranaceus (AM) herb is a component of traditional Chinese medicine used to treat various cancers. Herein, we demonstrate a strong anti-leukemic effect of AM injected (Ai) into the mouse model of erythroleukemia induced by Friend virus. Chemical analysis combined with mass spectrometry of AM/Ai identified the compounds Betulinic acid, Kaempferol, Hederagenin, and formononetin, all major mediators of leukemia inhibition in culture and in vivo.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
National Institutes for Food and Drug Control, Beijing 102629, China.
Ginsenoside Re was the major bioactive component found rich in C. A. Meyer, which exerted excellent cardiovascular protection, anti-inflammatory, and anti-oxidation effects.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea.
Despite the rapid advancement of glycosidase biotechnology, ginsenoside-transforming rhamnosidases remain underexplored due to a lack of research. In this study, we aimed to bridge this gap by evaluating eight putative rhamnosidases for their ability to transform ginsenosides. Among them, a novel rhamnosidase (C118) from was identified as being efficient at hydrolyzing ginsenoside Re.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!