The purpose of the current study was to investigate the feasibility of the application of defect-size femoral implants in a rabbit model of established cartilage defects and compare this treatment to microfracturing. In 31 New Zealand White rabbits, a medial femoral condyle defect was created in each knee. After 4 weeks, 3 animals were killed for defect baseline values. In the other 28 rabbits, knees were sham-operated, treated with microfracturing, or treated by placing an oxidized zirconium (OxZr) or cobalt-chromium (CoCr) implant (theta articulating surface 3.5 mm; fixating pin of 9.1 mm length). These animals were sacrificed 4 weeks after treatment. Joints were evaluated macroscopically. Implant osseointegration was measured by automated histomorphometry, and cartilage repair was scored microscopically. Cartilage quality was analyzed macroscopically and microscopically. Bone-implant contact was 63.2% +/- 3.2% for CoCr and 62.5% +/- 3.2% for OxZr. Cartilage defects did not show complete healing, nor during subsequent sham-surgery or microfracturing. For all treatments, considerable cartilage damage in the articulating medial tibia, and degeneration of lateral tibial and femoral cartilage was observed (p < 0.05). Both CoCr and OxZr implant-treated defects showed an increase of cartilage degeneration compared to microfracturing and sham-operated defects (p < 0.05). Although only a single short-term follow-up period was investigated in this study, caution is warranted using small metal implants as a treatment for established localized cartilage defects because, even after 4 weeks in this model, the metal implants caused considerable degeneration of the articulating surface.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jor.20709DOI Listing

Publication Analysis

Top Keywords

cartilage defects
16
metal implants
12
cartilage
10
cartilage damage
8
treatment established
8
established localized
8
localized cartilage
8
rabbit model
8
articulating surface
8
+/- 32%
8

Similar Publications

Introduction: Interspace defects after osteochondral autograft transfer (OATS) are filled only with fibrocartilage. Attempts have been made to address these issues in OATS with procedures like mega OATS and Hexagonal Osteochondral Graft System. We have described the functional outcomes of a hybrid technique combining a regeneration and a restoration modality to address the interspace defect in OATS.

View Article and Find Full Text PDF

Objective: To report a rare case of otogenic tension pneumocephalus as a complication of a diffuse leptomeningeal glioneuronal tumor in a patient with a ventriculoperitoneal (V. P.) shunt.

View Article and Find Full Text PDF

 Augmentation rhinoplasty requires graft with substantial volume. In cases where patient is reluctant to use costal cartilage, this can be done using septum and conchal cartilage graft. Using the technique of "stacked cartilage graft" an assembly is made using septum and conchal cartilage for nasal augmentation and contour defects.

View Article and Find Full Text PDF

[Application of spiral tracheoplasty in thyroid cancer with tracheal invasion].

Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi

December 2024

Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha410011, China.

To explore the application of spiral tracheoplasty in the repair of large tracheal defects after the resection of trachea invaded by thyroid cancer. A retrospective analysis was performed on the clinical data of 11 patients, including 4 males and 7 females, aged from 36 to 67 years old, with large tracheal defects after tracheal resection due to thyroid papillary carcinoma invading the trachea in the Department of Otorhinolaryngology Head and Neck Surgery, Second Xiangya Hospital, Central South University from January 2019 to January 2022. The range of tracheal defects, time of tracheal reconstruction, postoperative complications and airway were recorded, and the patients were followed up for more than 24 months.

View Article and Find Full Text PDF

Therapeutic role of aripiprazole in cartilage defects explored through a drug repurposing approach.

Sci Rep

December 2024

Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.

Articular cartilage has a limited regenerative capacity, resulting in poor spontaneous healing of damaged tissue. Despite various scientific efforts to enhance cartilage repair, no single method has yielded satisfactory results. With rising drug development costs, drug repositioning has emerged as a viable alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!