Adaptative modifications of right coronary myocytes voltage-gated K+ currents in rat with hypoxic pulmonary hypertension.

Pflugers Arch

Laboratoire de Physiopathologie de la Paroi Artérielle, EA 3852, IFR 135, UFR Médecine, Université François Rabelais, 10 Bld Tonnellé, BP 3223, 37032, Tours Cedex, France.

Published: February 2009

Chronic hypoxia (CH)-induced pulmonary hypertension (PHT) is well known to alter K+ channels in pulmonary myocytes. PHT induces right ventricle hypertrophy that increases oxygen demand; however, coronary blood flow and K+ channel adaptations of coronary myocytes during PHT remain unknown. We determined whether CH and PHT altered K+ currents and coronary reactivity and what impact they might have on right myocardial perfusion. Right ventricle perfusion, as attested by microspheres, was redistributed toward hypertrophied right ventricle [RV/LV (%)=0.59+/-0.07% in CH rats vs. 0.29+/-0.03 in control rats, P<0.05]. Whole-cell patch clamping showed a reduction of global outward current in hypoxic right coronary artery myocytes (H-RCA), whereas hypoxic left coronary artery myocytes exhibited an increase. K+ channel blockers revealed that a 4-aminopyridine (4AP)-sensitive current (Kv current) was decreased in H-RCA (14.3+/-1.1 vs. 23.4+/-2.5 pA/pF at 60 mV in control RCA, P<0.05) and increased in hypoxic left coronary artery myocytes (H-LCA; 26.4+/-3.8 vs. 11.8+/-1.6 pA/pF at 60 mV in control LCA, P<0.05). Constriction to 4AP was decreased in H-RCA when compared to normoxic control and increased in H-LCA when compared to LCA. Finally, we observed that the expression of Kv1.2 and Kv1.5 were lower in H-RCA than that in H-LCA. This study reveals that CH differentially regulates Kv channels in coronary myocytes. Hypoxia decreases Kv currents and therefore reduces vasoreactivity that contributes to an adaptative response leading to right hypertrophied ventricle perfusion enhancement at rest.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-008-0546-xDOI Listing

Publication Analysis

Top Keywords

coronary myocytes
8
pulmonary hypertension
8
myocytes pht
8
adaptative modifications
4
coronary
4
modifications coronary
4
myocytes voltage-gated
4
voltage-gated currents
4
currents rat
4
rat hypoxic
4

Similar Publications

Adrenomedullin 2/Intermedin Exerts Cardioprotective Effects by Regulating Cardiomyocyte Mitochondrial Function.

Hypertension

January 2025

Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan. (Y. Zhao, T. Sakurai, A.K., M.T., Y.I.-S., H.K., Y.M., Y. Zhang, Q.G., P.L., K.H., M.H., J.L., T. Shindo).

Background: Adrenomedullin 2 (AM2) plays critical roles in regulating blood pressure and fluid balance. However, the specific involvement of AM2 in cardiac hypertrophy has not been comprehensively elucidated, warranting further investigation into its molecular mechanisms and therapeutic implications.

Methods: Cardiac hypertrophy was induced in adult mice lacking AM2 (AM2-/-) using transverse aortic constriction surgery.

View Article and Find Full Text PDF

ECM Modifications Driven by Age and Metabolic Stress Directly Promote the Vascular Smooth Muscle Cell Osteogenic Processes.

Arterioscler Thromb Vasc Biol

January 2025

British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, United Kingdom. (M.W., M.F., R.O., L.S., M.M., C.M.S.).

Background: The ECM (extracellular matrix) provides the microenvironmental niche sensed by resident vascular smooth muscle cells (VSMCs). Aging and disease are associated with dramatic changes in ECM composition and properties; however, their impact on the VSMC phenotype remains poorly studied.

Methods: Here, we describe a novel in vitro model system that utilizes endogenous ECM to study how modifications associated with age and metabolic disease impact the VSMC phenotype.

View Article and Find Full Text PDF

Cardiomyocyte S1PR1 promotes cardiac regeneration via AKT/mTORC1 signaling pathway.

Theranostics

January 2025

State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.

Lower vertebrates and some neonatal mammals are known to possess the ability to regenerate cardiomyocyte and fully recover after heart injuries within a limited period. Understanding the molecular mechanisms of heart regeneration and exploring new ways to enhance cardiac regeneration hold significant promise for therapeutic intervention of heart failure. Sphingosine 1-phospahte receptor 1 (S1PR1) is highly expressed in cardiomyocytes and plays a crucial role in heart development and pathological cardiac remodeling.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a rare and potentially fatal condition characterized by progressive increases in blood pressure in the arteries of the lungs. Oral selexipag, approved by the Food and Drug Administration (FDA) in 2015 for the treatment of PAH, targets prostacyclin receptors on pulmonary arterial vascular smooth muscle and endothelial cells to improve blood flow through the lungs and reduce pulmonary vascular resistance. Oral selexipag is effective, but may be discontinued due to factors like side effects, emergency conditions, or inability to take oral medication, potentially leading to severe adverse events, such as rebound pulmonary hypertension and right heart failure.

View Article and Find Full Text PDF

Nucleosome repositioning in cardiac reprogramming.

PLoS One

January 2025

Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, United States of America.

Early events in the reprogramming of fibroblasts to cardiac muscle cells are unclear. While various histone undergo modification and re-positioning, and these correlate with the activity of certain genes, it is unknown if these events are causal or happen in response to reprogramming. Histone modification and re-positioning would be expected to open up chromatin on lineage-specific genes and this can be ascertained by studying nucleosome architecture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!