A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Structural characterization of mutant alpha-galactosidases causing Fabry disease. | LitMetric

Structural characterization of mutant alpha-galactosidases causing Fabry disease.

J Hum Genet

Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.

Published: November 2008

Fabry disease is an inborn error of glycolipid catabolism resulting from lesions in the gene encoding alpha-galactosidase (GLA). To elucidate the basis of Fabry disease, we constructed structural models of mutant GLAs responsible for the disease and calculated indexes, i.e., the numbers of atoms affected in the main chain and side chain of each mutant GLA, the root-mean-square distance values, and the solvent-accessible surface-area values, based on 212 Fabry amino acid substitutions previously reported (196 classic and 16 variant). As two therapeutic options, enzyme replacement and enzyme enhancement, are now available for this disease, proper prediction of the natural outcome and therapeutic efficiency based on the molecular evidence for individual cases are critical for patients' quality of life. Our results revealed that structural changes in the classic Fabry group were generally large and tended to be in the core region of a protein or located in the functionally important region, including the active-site pocket. On the other hand, structural changes in the variant Fabry group were small or localized on the surface of the molecule far away from the active site. We focused on structural changes due to amino acid substitutions for which substrate analogues are effective for improving the stability or transportation of mutant GLAs, and the results of the study revealed that they are small or localized on the molecular surface, regardless of the phenotype. Coloring of affected atoms based on distances between wild type and mutant ones clearly showed the characteristic structural changes in the GLA protein geographically and subquantitatively. Structural investigation is useful for elucidation of the basis of Fabry disease and predicting disease outcome.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10038-008-0316-9DOI Listing

Publication Analysis

Top Keywords

fabry disease
16
structural changes
16
basis fabry
8
mutant glas
8
amino acid
8
acid substitutions
8
fabry group
8
small localized
8
structural
7
fabry
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!