Purification and cloning of an extracellular serine protease from the nematode-trapping fungus Monacrosporium cystosporium.

J Microbiol Biotechnol

Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China.

Published: May 2008

An extracellular protease (Mc1) was isolated from the nematode-trapping fungus Monacrosporium cystosporium by gel filtration, anion-exchange, and hydrophobic interaction chromatographies. This protease had a molecular mass of approximately 38 kDa and displayed an optimal activity at pH 7-9 and 56 degrees (over 30 min). Its proteolytic activity was highly sensitive to the serine protease inhibitor PMSF (phenylmethylsulfonylfluoride, 0.1 mM), indicating that it belonged to the serine-type peptidase group. The Michaelis constant (Km) and Vmax for substrate N-Suc-Ala-Ala-Pro-Phe-pNA were 1.67x10-4 M and 0.6071 OD410 per 30 s, respectively. This protease could degrade a broad range of substrates including casein, gelatin, BSA (bovine serum albumin), and nematode cuticle. Moreover, the enzyme could immobilize the free-living nematode Panagrellus redivivus and the pine wood nematode Bursaphelenchus xylophilus, suggesting that it might play a role in infection against nematodes. The encoding gene of Mc1 was composed of one intron and two exons, coding for a polypeptide of 405 amino acid residues. The deduced amino acid sequence of Mc1 showed 61.4-91.9% identity to serine proteases from other nematode-trapping fungi. Our results identified that Mc1 possessed biochemical properties including optimal reaction condition and substrate preference that are different from previously identified serine proteases.

Download full-text PDF

Source

Publication Analysis

Top Keywords

serine protease
8
nematode-trapping fungus
8
fungus monacrosporium
8
monacrosporium cystosporium
8
amino acid
8
serine proteases
8
protease
5
purification cloning
4
cloning extracellular
4
serine
4

Similar Publications

Introduction: Prostate cancer (PCa) is the commonest urologic cancer worldwide and the leading cause of male cancer deaths in Nigeria. In Nigeria, orchidectomy remains the primary androgen deprivation therapy. Dihydrotestosterone (DHT) is the active prostatic androgen, but its relationship with PCa severity has not been extensively studied in Africa.

View Article and Find Full Text PDF

We intended to investigate the potential of several transitional zone (TZ) volume-related variables for the detection of clinically significant prostate cancer (csPCa) among lesions scored as Prostate Imaging Reporting and Data System (PI-RADS) category 3. Between September 2018 and August 2023, patients who underwent mpMRI examination and scored as PI-RADS 3 were queried from our institution. The diagnostic performances of prostate-specific antigen density (PSAD), TZ-adjusted PSAD (TZPSAD), and TZ-ratio (TZ volume/whole gland prostate volume) were analyzed.

View Article and Find Full Text PDF

The process of viral entry into host cells is crucial for the establishment of infection and the determination of viral pathogenicity. A comprehensive understanding of entry pathways is fundamental for the development of novel therapeutic strategies. Standard techniques for investigating viral entry include confocal microscopy and flow cytometry, both of which provide complementary qualitative and quantitative data.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate the accuracy of multiparametric magnetic resonance imaging (mpMRI), genetic urinary test (GUT), and prostate cancer prevention trial risk calculator version 2.0 (PCPTRC2) for the clinically significant prostate cancer (csPCa) diagnostic in biopsy-naïve patients.

Materials And Methods: In a single center study between 2021 and 2024 participants underwent prostate mpMRI, GUT, and ultrasound (US) guided biopsy.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for causing the Coronavirus disease 2019 (COVID-19) outbreak. While mutations cause the emergence of new variants, the ancestral SARS-CoV-2 strain is unique among other strains. Various clinical parameters, the activity of cathepsin proteases, and the concentration of various proteins were measured in urine samples from COVID-19-negative participants and COVID-19-positive participants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!