Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The synfire chain model has been proposed as the substrate that underlies computational processes in the brain and has received extensive theoretical study. In this model cortical tissue is composed of a superposition of feedforward subnetworks (chains) each capable of transmitting packets of synchronized spikes with high reliability. Computations are then carried out by interactions of these chains. Experimental evidence for synfire chains has so far been limited to inference from detection of a few repeating spatiotemporal neuronal firing patterns in multiple single-unit recordings. Demonstration that such patterns actually come from synfire activity would require finding a meta organization among many detected patterns, as yet an untried approach. In contrast we present here a new method that directly visualizes the repetitive occurrence of synfire activity even in very large data sets of multiple single-unit recordings. We achieve reliability and sensitivity by appropriately averaging over neuron space (identities) and time. We test the method with data from a large-scale balanced recurrent network simulation containing 50 randomly activated synfire chains. The sensitivity is high enough to detect synfire chain activity in simultaneous single-unit recordings of 100 to 200 neurons from such data, enabling application to experimental data in the near future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2576207 | PMC |
http://dx.doi.org/10.1152/jn.01245.2007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!