A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Voxel-based analysis of 11C-PIB scans for diagnosing Alzheimer's disease. | LitMetric

Unlabelled: The positron emission tomography (PET) radioligand N-methyl-11C-2-(4-methylaminophenyl)-6-hydroxybenzothiazole (also known as 11C-6-OH-BTA-1 or 11C-PIB) binds to amyloid-beta (Abeta), which accumulates pathologically in Alzheimer's disease (AD). Although 11C-PIB accumulation is greater in patients with AD than in healthy controls at a group level, the optimal method for discriminating between these 2 groups has, to our knowledge, not been established. We assessed the use of data-determined standardized voxels of interest (VOIs) to improve the classification capability of 11C-PIB scans on patients with AD.

Methods: A total of 16 controls and 14 AD age-matched patients were recruited. All subjects underwent a 11C-PIB scan and structural MRI. Binding potential (a measure of amyloid burden) was calculated for each voxel using the Logan graphical method with cerebellar gray matter as the reference region. Voxel maps were then partial-volume corrected and spatially normalized by MRI onto a standardized template. The subjects were divided into 2 cohorts. The first cohort (control, 12; AD, 9) was used for statistical parametric mapping analysis and delineation of data-based VOIs. These VOIs were tested in the second cohort (control, 4; AD, 5) of subjects.

Results: Statistical parametric mapping analysis revealed significant differences between control and AD groups. The VOI map determined from the first cohort resulted in complete separation between the control and the AD subjects in the second cohort (P < 0.02). Binding potential values based on this VOI were in the same range as other reported individual and mean cortical VOI results.

Conclusion: A standardized VOI template that is optimized for control or AD group discrimination provides excellent separation of control and AD subjects on the basis of 11C-PIB uptake. This VOI template can serve as a potential replacement for manual VOI delineation and can eventually be fully automated, facilitating potential use in a clinical setting. To facilitate independent analysis and validation with more and a broader variety of subjects, this VOI template and the software for processing will be made available through the Internet.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3103049PMC
http://dx.doi.org/10.2967/jnumed.107.049932DOI Listing

Publication Analysis

Top Keywords

voi template
12
11c-pib scans
8
alzheimer's disease
8
binding potential
8
cohort control
8
statistical parametric
8
parametric mapping
8
mapping analysis
8
second cohort
8
separation control
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!