Solid tumor metastasis often involves detachment of epithelial carcinoma cells into the vasculature or lymphatics. However, most studies of cytoskeletal rearrangement in solid tumors focus on attached cells. In this study, we report for the first time that human breast tumor cells produce unique tubulin-based protrusions when detached from extracellular matrix. Tumor cell lines of high metastatic potential show significantly increased extension and frequency of microtubule protrusions, which we have termed tubulin microtentacles. Our previous studies in nontumorigenic mammary epithelial cells showed that such detachment-induced microtentacles are enriched in detyrosinated alpha-tubulin. However, amounts of detyrosinated tubulin were similar in breast tumor cell lines despite varying microtentacle levels. Because detyrosinated alpha-tubulin associates strongly with intermediate filament proteins, we examined the contribution of cytokeratin and vimentin filaments to tumor cell microtentacles. Increased microtentacle frequency and extension correlated strongly with loss of cytokeratin expression and up-regulation of vimentin, as is often observed during tumor progression. Moreover, vimentin filaments coaligned with microtentacles, whereas cytokeratin did not. Disruption of vimentin with PP1/PP2A-specific inhibitors significantly reduced microtentacles and inhibited cell reattachment to extracellular matrix. Furthermore, expression of a dominant-negative vimentin mutant disrupted endogenous vimentin filaments and significantly reduced microtentacles, providing specific genetic evidence that vimentin supports microtentacles. Our results define a novel model in which coordination of vimentin and detyrosinated microtubules provides structural support for the extensive microtentacles observed in detached tumor cells and a possible mechanism to promote successful metastatic spread.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2859318 | PMC |
http://dx.doi.org/10.1158/0008-5472.CAN-07-6589 | DOI Listing |
Cell
December 2024
Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany. Electronic address:
Replication and genome encapsidation of many negative-sense RNA viruses take place in virus-induced membraneless organelles termed viral factories (VFs). Although liquid properties of VFs are believed to control the transition from genome replication to nucleocapsid (NC) assembly, VF maturation and interactions with the cellular environment remain elusive. Here, we apply in situ cryo-correlative light and electron tomography to follow NC assembly and changes in VF morphology and their liquid properties during Ebola virus infection.
View Article and Find Full Text PDFPol J Vet Sci
December 2024
Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey.
Intermediate filaments (IFs) play a major role in determining and maintaining cell shape and anchoring intracellular organelles in place, in the tissues and organs of several species, starting from the early stages of development. This study was aimed at the immunohistochemical investigation of the presence, cellular localization and temporal distribution of the intermediate filaments keratin 8 (CK8), keratin 18 (CK18), keratin 19 (CK19), vimentin, desmin and laminin, all of which contribute to the formation of the cytoskeleton in the rat mammary gland during pregnancy, lactation and involution. On days 7, 14 and 21 of pregnancy (pregnancy period), on day 7 post-delivery (lactation period) and on day 7 post-weaning (involution period), under ketamine hydrochloride (Ketalar-Pfizer) (90 mg/kg) anesthesia, two mammary glands were fully excised from the abdominal region.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Centre for Biomedical Engineering, Indian Institute of Technology, Delhi 110016, India.
Dexter energy transfer (DET) of triplet electronic states is used to direct energy in photovoltaics, quench reactive singlet oxygen species in biological systems, and generate them in photodynamic therapy. However, the extent to which repeated DET between aromatic residues can lead to triplet energy migration in proteins has not been investigated. Here, we computationally describe DET rates in microtubules, actin filaments and the intermediate filament, vimentin.
View Article and Find Full Text PDFRedox Biol
December 2024
Department of Biochemistry and Molecular Biology, School of Basic Medicine, Guizhou Medical University, Gui'an, 561113, Guizhou, PR China. Electronic address:
NADPH oxidase 1 (Nox1) is a major isoform of Nox in vascular smooth muscle cells (VSMCs). VSMC activation and extracellular matrix (ECM) remodelling induce abdominal aortic aneurysm (AAA). In this study, we aim to determine the role of Nox1 in the progression of AAA and explore the underling mechanism.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
December 2024
Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China. Electronic address:
Targeted therapies persist as the conventional method of treatment of kidney clear cell carcinoma (KIRC). However, resistance to these drugs emerges as a significant impediment to the management of renal cancer. MICAL-L2 plays a pivotal role in cytoskeleton rearrangement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!