Filamentous bulking at a slaughterhouse activated sludge treatment plant significantly reduced mixed liquor settling properties, which caused many operational problems and worsening in effluent quality. The main cause of this condition was attributed to significant levels of influent readily biodegradable COD, which was present primarily in the form of organic acids. An aerobic selector was chosen to eradicate the usual bulking incidents of slaughterhouse wastewater treatment plants. Other plant enhancements included increased aeration batch reactor volume, and provision of step feed capability. Comparison of data before and after aerobic selector installation showed a significant improvement in mixed liquor settleability, which eradicated the need for chemicals that had been used to control filaments and to control effluent solids loss. The additional volume of the aeration and chemicals eliminations from the activated sludge system also served to eliminate aquatic toxicity in the treated effluent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2007.12.030 | DOI Listing |
Environ Toxicol Chem
January 2025
Aquatic Toxicology Laboratory, St Cloud State University, Minnesota, USA.
Treated municipal wastewater effluent is an important pathway for Contaminants of Emerging Concern (CEC) to enter aquatic ecosystems. As the aging wastewater infrastructure in many industrialized countries requires upgrades or replacement, assessing new treatment technologies in the context of CEC effects may provide additional support for science-based resource management. Here, we used three lines of evidence, analytical chemistry, fish exposure experiments, and fish and water microbiome analysis, to assess the effectiveness of membrane bioreactor treatment (MBR) to replace traditional activated sludge treatment.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Environmental Microbiology Group, Institute of Water Research, University of Granada, 18003, Granada, Spain.
Microbial fuel cell (MFC) technology has received increased interest as a suitable approach for treating wastewater while producing electricity. However, there remains a lack of studies investigating the impact of inoculum type and hydraulic retention time (HRT) on the efficiency of MFCs in treating industrial saline wastewater. The effect of three different inocula (activated sludge from a fish-canning industry and two domestic wastewater treatment plants, WWTPs) on electrochemical and physicochemical parameters and the anodic microbiome of a two-chambered continuous-flow MFC was studied.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
In the manufacturing of some sectors, such as marble and brick, certain byproducts, such as sludge, powder, and pieces containing valuable chemical compounds, emerge. Some concrete plants utilize these byproducts as mineralogical additives in Turkey. The objective of the experimental study is to ascertain whether the incorporation of waste from the marble and brick industries, in powder form, into cement manufacturing as a mineralogical additive or substitute is a viable option.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China. Electronic address:
3,5-Dichloroaniline (3,5-DCA) is extensively used in synthesizing dicarboximide fungicides, medical compounds and dyes. Due to its widespread use in agriculture and industry, 3,5-DCA is often detected in groundwater, wastewater, sediments and soil, posing great risk to animals and humans. However, the genes and enzymes involved in 3,5-DCA degradation remain unidentified.
View Article and Find Full Text PDFEnviron Technol
January 2025
Chengdu Center, China Geological Survey (Geosciences Innovation Center of Southwest China), Chengdu, People's Republic of China.
The acid mine drainage (AMD) is characterized by its highly acidic nature and elevated concentrations of metal ions, thereby exerting significant impacts on both human health and the environment. This study employed a dispersed alkaline substrate (DAS) consisting of thermal activation magnesite and pine shavings for the treatment of AMD. The investigation focused on determining the optimal thermal activation conditions of magnesite, evaluating the effectiveness of the DAS in regulating acidity and removing metal ions from AMD, identifying critical factors influencing treatment efficiency, and conducting toxicity assessment on the effluent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!