Background: Although weight bearing lunge exercises are frequently employed during patellofemoral rehabilitation, patellofemoral compressive force and stress are currently unknown for these exercises.

Methods: Eighteen subjects used their 12 repetition maximum weight while performing forward and side lunges with and without a stride. EMG, force platform, and kinematic variables were input into a biomechanical model, and patellofemoral compressive force and stress were calculated as a function of knee angle.

Findings: Patellofemoral force and stress progressively decreased as knee flexion increased and progressively increased as knee flexion decreased. Patellofemoral force and stress were greater in the side lunge compared to the forward lunge between 80 degrees and 90 degrees knee angles, and greater with a stride compared to without a stride between 10 degrees and 50 degrees knee angles. There were no significant interactions between lunge variations and stride variations.

Interpretation: A more functional knee flexion range between 0 degrees and 50 degrees may be appropriate during the early phases of patellofemoral rehabilitation due to lower patellofemoral compressive force and stress during this range compared to higher knee angles between 60 degrees and 90 degrees. Moreover, when the goal is to minimize patellofemoral compressive force and stress, it may be prudent to employ forward and side lunges without a stride compared to with a stride, especially at lower knee angles between 0 degrees and 50 degrees. Understanding differences in patellofemoral compressive force and stress among lunge variations may help clinicians prescribe safer and more effective exercise interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiomech.2008.05.002DOI Listing

Publication Analysis

Top Keywords

force stress
32
patellofemoral compressive
24
compressive force
24
degrees degrees
20
knee angles
16
forward side
12
side lunges
12
lunges stride
12
knee flexion
12
patellofemoral
10

Similar Publications

Objective: The complex mix of factors, including hemodynamic forces and wall remodeling mechanisms, that drive intracranial aneurysm growth is unclear. This study focuses on the specific regions within aneurysm walls where growth occurs and their relationship to the prevalent hemodynamic conditions to reveal critical mechanisms leading to enlargement.

Methods: The authors examined hemodynamic models of 67 longitudinally followed aneurysms, identifying 88 growth regions.

View Article and Find Full Text PDF

Building on emerging literature, a new self-report inventory was developed to assess multiple psychological attributes relevant to adaptability in remote warriors. Literature search backed by surveys of military and psychological experts identified 32 attributes for self-report scale development. Items were sorted reliably into targeted dimensions (67.

View Article and Find Full Text PDF

The developmental theory of ageing proposes that age-specific decline in the force of natural selection results in suboptimal levels of gene expression in adulthood, leading to functional senescence. This theory explicitly predicts that optimising gene expression in adulthood can ameliorate functional senescence and improve fitness. Reduced insulin/IGF-1 signalling (rIIS) extends the reproductive lifespan of Caenorhabditis elegans at the cost of reduced reproduction.

View Article and Find Full Text PDF

Objective: The use of vertical margin design in all-ceramic restoration has generated inquiries regarding its clinical efficacy under diverse dynamic oral conditions. This research aims to assess the marginal fit and fracture resistance of monolithic zirconia crowns featuring vertical margin design as opposed to those with conventional horizontal margin design.

Materials And Methods: Two metal dies were employed to generate replicated resin dies mimicking mandibular first molar preparation.

View Article and Find Full Text PDF

Interfacial Strain-Driven Large Topological Hall Effects in Supermalloy Thin Films with Noncoplanar Spin Textures.

ACS Appl Mater Interfaces

January 2025

School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India.

Materials exhibiting topological transport properties, such as a large topological Hall resistivity, are crucial for next-generation spintronic devices. Here, we report large topological Hall resistivities in epitaxial supermalloy (NiFeMo) thin films with [100] and [111] orientations grown on single-crystal MgO (100) and AlO (0001) substrates, respectively. While X-ray reciprocal maps confirmed the epitaxial growth of the films, X-ray stress analyses revealed large residual strains in the films, inducing tetragonal distortions of the cubic NiFeMo unit cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!