RNA pseudoknots and the regulation of protein synthesis.

Biochem Soc Trans

Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK.

Published: August 2008

RNA pseudoknots are structural elements found in almost all classes of RNA. Pseudoknots form when a single-stranded region in the loop of a hairpin base-pairs with a stretch of complementary nucleotides elsewhere in the RNA chain. This simple folding strategy is capable of generating a large number of stable three-dimensional folds that display a diverse range of highly specific functions in a variety of biological processes. The present review focuses on pseudoknots that act in the regulation of protein synthesis using cellular and viral examples to illustrate their versatility. Emphasis is placed on structurally well-defined pseudoknots that play a role in internal ribosome entry, autoregulation of initiation, ribosomal frameshifting during elongation and trans-translation.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BST0360684DOI Listing

Publication Analysis

Top Keywords

rna pseudoknots
12
pseudoknots regulation
8
regulation protein
8
protein synthesis
8
rna
4
synthesis rna
4
pseudoknots
4
pseudoknots structural
4
structural elements
4
elements classes
4

Similar Publications

Frameshifting is an essential mechanism employed by many viruses including coronaviruses to produce viral proteins from a compact RNA genome. It is facilitated by specific RNA folds in the frameshift element (FSE), which has emerged as an important therapeutic target. For SARS-CoV-2, a specific 3-stem pseudoknot has been identified to stimulate frameshifting.

View Article and Find Full Text PDF

Biogenesis of human telomerase requires its RNA subunit (hTR) to fold into a multi-domain architecture that includes the template-pseudoknot (t/PK) and the three-way junction (CR4/5). These hTR domains bind the telomerase reverse transcriptase (hTERT) protein and are essential for telomerase activity. Here, we probe hTR structure in living cells using dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) and ensemble deconvolution analysis.

View Article and Find Full Text PDF

We show that a small biotin-binding RNA aptamer that folds into a pseudoknot structure acts as a substrate for bacterial RNase P RNA (RPR) with and without the RNase P C5 protein. Cleavage in the single-stranded region in loop 1 was shown to depend on the presence of a RCCA-motif at the 3' end of the substrate. The nucleobase and the 2'hydroxyl at the position immediately 5' of the cleavage site contribute to both cleavage efficiency and site selection, where C at this position induces significant cleavage at an alternative site, one base upstream of the main cleavage site.

View Article and Find Full Text PDF

Designing RNA sequences that form a specific structure remains a challenge. Current computational methods often struggle with the complexity of RNA structures, especially when considering pseudoknots or restrictions related to RNA function. We developed DesiRNA, a computational tool for the design of RNA sequences based on the Replica Exchange Monte Carlo approach.

View Article and Find Full Text PDF

RNA Translocation through Protein Nanopores: Interlude of the Molten RNA Globule.

J Am Chem Soc

January 2025

Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States.

Direct translocation of RNA with secondary structures using single-molecule electrophoresis through protein nanopores shows significant fluctuations in the measured ionic current, in contrast to unstructured single-stranded RNA or DNA. We developed a multiscale model combining the oxRNA model for RNA with the 3-dimensional Poisson-Nernst-Planck formalism for electric fields within protein pores, aiming to map RNA conformations to ionic currents as RNA translocates through three protein nanopores: α-hemolysin, CsgG, and MspA. Our findings reveal three distinct stages of translocation (pseudoknot, melting, and molten globule) based on contact maps and current values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!