The dilute solution properties of poly(9,9-dihexylfluorene-2,7-diyl) (PDHF) were studied by coupled SEC/light scattering and MALDI-TOF over a large molecular weight (MW) span ranging from PDHF oligomers (1-8-mer) to high MW polymer. The results were compared with Monte Carlo simulations based on realistic PDHF models obtained from X-ray data and density functional theory (DFT) calculations and with a DFT based Kratky-Porod-Benoit-Doty (KPBD) worm-like chain. The simulations called "selective random walk" (SRW) and the corresponding "selective self-avoiding random walk" (SSAW) explicitly take into account the rotationally labile bonds between the fluorene units in that four distinct torsion angles (+/-37.5 and +/-143 degrees) between the units are chosen randomly. The simulations better account than the KPBD model for the experimental data obtained by us and others for various poly(9,9-dialkylfluorene-2,7-diyl) polymers but still give somewhat larger values for the radii of gyration and hydrodynamic volumes. The torsion angle selectivity of the SRW and SSAW simulations predict long chain sections punctuated by sudden sharp loops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp800440z | DOI Listing |
BMC Chem
January 2025
Energy Systems Engineering Department, Engineering Faculty, Adana Alparslan Türkeş Science and Technology University, 01250, Adana, Türkiye.
Although the antiallergic properties of compounds such as CAPE, Melatonin, Curcumin, and Vitamin C have been poorly discussed by experimental studies, the antiallergic properties of these famous molecules have never been discussed with calculations. The histamine-1 receptor (H1R) belongs to the family of rhodopsin-like G-protein-coupled receptors expressed in cells that mediate allergies and other pathophysiological diseases. In this study, pharmacological activities of FDA-approved second generation H1 antihistamines (Levocetirizine, desloratadine and fexofenadine) and molecules such as CAPE, Melatonin, Curcumin, Vitamin C, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) profiles, density functional theory (DFT), molecular docking, biological targets and activities were compared by calculating.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, Miskolc, 3515, Hungary.
Aromatic π-complexes play a significant role in various chemical and biological systems, significantly influencing their physico-chemical and spectroscopic properties. The identification of new compounds capable of π-complex formation is therefore of great interest. The paper investigates the fluorescent properties of 1,5-diisocyanonaphthalene (1,5-DIN) in different aromatic solvents, demonstrating its potential for distinguishing between aromatics based on emission spectra.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.
Inorg Chem
January 2025
Laboratory for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, 2-12-1 N1-32, O-okayama, Meguro-ku, Tokyo 152-8550, Japan.
ACS Appl Mater Interfaces
January 2025
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India.
This work aims to deal with the challenges associated with designing complementary bifunctional electrocatalysts and a separator/membrane that enables rechargeable zinc-air batteries (RZABs) with nearly solid-state operability. This solid-state RZAB was accomplished by integrating a bifunctional electrocatalyst based on Ru-RuO interface nanoparticles supported on nitrogen-doped (N-doped) graphene (Ru-RuO/NGr) and a dual-doped poly(acrylic acid) hydrogel (d-PAA) electrolyte soaked in KOH with sodium stannate additive. The catalyst shows enhanced activity and stability toward the two oxygen reactions, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!