AI Article Synopsis

  • Lymph nodes act as critical points where the blood and lymphatic systems connect, facilitating the transport of immune cells and antigens.
  • Researchers conducted an immunofluorescence study to examine the molecular components of endothelial cell junctions, focusing on various adhesion molecules, and found unique characteristics in high endothelial venules (HEV) that allow naive lymphocytes to enter the lymph nodes.
  • The study revealed how different junctions in lymph node endothelium create specialized barriers that regulate the movement of antigens and immune cells, ensuring proper immune response within the lymph node tissue.

Article Abstract

Lymph nodes are strategically localized at the interfaces between the blood and lymphatic vascular system, delivering immune cells and antigens to the lymph node. As cellular junctions of endothelial cells actively regulate vascular permeability and cell traffic, we have investigated their molecular composition by performing an extensive immunofluorescence study for adherens and tight junction molecules, including vascular endothelium (VE)-cadherin, the vascular claudins 1, 3, 5 and 12, occludin, members of the junctional adhesion molecule family plus endothelial cell-selective adhesion molecule (ESAM)-1, platelet endothelial cell adhesion molecule-1, ZO-1 and ZO-2. We found that junctions of high endothelial venules (HEV), which serve as entry site for naive lymphocytes, are unique due to their lack of the endothelial cell-specific claudin-5. LYVE-1(+) sinus-lining endothelial cells form a diffusion barrier for soluble molecules that arrive at the afferent lymph and use claudin-5 and ESAM-1 to establish characteristic tight junctions. Analysis of the spatial relationship between the different vascular compartments revealed that HEV extend beyond the paracortex into the medullary sinuses, where they are protected from direct contact with the lymph by sinus-lining endothelial cells. The specific molecular architecture of cellular junctions present in blood and lymphatic vessel endothelium in peripheral lymph nodes establishes distinct barriers controlling the distribution of antigens and immune cells within this tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.200838140DOI Listing

Publication Analysis

Top Keywords

blood lymphatic
12
endothelial cells
12
molecular composition
8
lymphatic vascular
8
endothelial
8
endothelial cell
8
peripheral lymph
8
lymph node
8
lymph nodes
8
immune cells
8

Similar Publications

Early neutrophil activation and NETs release in the pristane-induced lupus mice model.

PLoS One

January 2025

Laboratório de Imunologia Celular (LIM-17), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.

Article Synopsis
  • The study investigates the role of NETosis in the initiation of lupus using a mouse model.
  • Mice injected with pristane showed significantly more activated neutrophils and low-density granulocytes, as well as increased release of neutrophil extracellular traps compared to the control group.
  • These findings suggest that early activation of neutrophils and NETosis may contribute to the development of lupus in this model.
View Article and Find Full Text PDF

Tertiary lymphoid structures (TLS) in the tumor microenvironment are prognostically beneficial in many solid cancer types. Reports on TLS in high-grade serous tubo-ovarian carcinoma (HGSC) are few, and the prognostic impact is unclear. We investigated mature TLS (mTLS), immature TLS (iTLS) and lymphoid aggregates (LA) in primary adnexal tumors (PTs) and synchronous omental/peritoneal metastases (pMets) of HGSC.

View Article and Find Full Text PDF

Objectives: To develop ultrasound-based radiomics models and a clinical model associated with inflammatory markers for predicting intrahepatic cholangiocarcinoma (ICC) lymph node (LN) metastasis. Both are integrated for enhanced preoperative prediction.

Methods: This study retrospectively enrolled 156 surgically diagnosed ICC patients.

View Article and Find Full Text PDF

Trigger inducible tertiary lymphoid structure formation using covalent organic frameworks for cancer immunotherapy.

Nat Commun

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.

The discovery of tertiary lymphoid structures (TLS) within tumor tissues provides a promising avenue to promote the efficacy of cancer immunotherapy. Yet, the lack of effective strategies to induce TLS formation poses a substantial obstacle. Thus, the exploration of potential inducers for TLS formation is of great interest but remains challenging.

View Article and Find Full Text PDF

B cells and tertiary lymphoid structures in tumors: immunity cycle, clinical impact, and therapeutic applications.

Theranostics

January 2025

Hepatic Surgery Center, and Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, P. R. China.

Tumorigenesis involves a multifaceted and heterogeneous interplay characterized by perturbations in individual immune surveillance. Tumor-infiltrating lymphocytes, as orchestrators of adaptive immune responses, constitute the principal component of tumor immunity. Over the past decade, the functions of tumor-specific T cells have been extensively elucidated, whereas current understanding and research regarding intratumoral B cells remain inadequate and underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!