A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rat liver mitochondrial carnitine palmitoyltransferase-I, hepatic carnitine, and malonyl-CoA: effect of starvation. | LitMetric

Rat liver mitochondrial carnitine palmitoyltransferase-I, hepatic carnitine, and malonyl-CoA: effect of starvation.

Arch Physiol Biochem

Department of Nutrition, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA.

Published: July 2008

Hepatic mitochondrial fatty acid oxidation and ketogenesis increase during starvation. Carnitine palmitoyltransferase I (CPT-I) catalyses the rate-controlling step in the overall pathway and retains its control over beta-oxidation under fed, starved and diabetic conditions. To determine the factors contributing to the reported several-fold increase in fatty acid oxidation in perfused livers, we measured the V(max) and K(m) values for palmitoyl-CoA and carnitine, the K(i) (and IC(50)) values for malonyl-CoA in isolated liver mitochondria as well as the hepatic malonyl-CoA and carnitine contents in control and 48 h starved rats. Since CPT-I is localized in the mitochondrial outer membrane and in contact sites, the kinetic properties of CPT-I also was determined in these submitochondrial structures. After 48 h starvation, there is: (a) a significant increase in K(i) and decrease in hepatic malonyl-CoA content; (b) a decreased K(m) for palmitoyl-CoA; and (c) increased catalytic activity (V(max)) and CPT-I protein abundance that is significantly greater in contact sites compared with outer membranes. Based on these changes the estimated increase in mitochondrial fatty acid oxidation is significantly less than that observed in perfused liver. This suggests that CPT-I is regulated in vivo by additional mechanism(s) lost during mitochondrial isolation or/and that mitochondrial oxidation of peroxisomal beta-oxidation products contribute to the increased ketogenesis by bypassing CPT-I. Furthermore, the greater increase in CPT-I protein in contact sites as compared to outer membranes emphasizes the significance of contact sites in hepatic fatty acid oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13813450802181062DOI Listing

Publication Analysis

Top Keywords

fatty acid
16
acid oxidation
16
contact sites
16
mitochondrial fatty
8
hepatic malonyl-coa
8
cpt-i protein
8
sites compared
8
compared outer
8
outer membranes
8
cpt-i
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!