There is evidence that Tetracyclines are potentially useful drugs to treat prion disease, the fatal neurodegenerative disease in which cellular prion proteins change in conformation to become a disease-specific species (PrP(Sc)). Based on an in vitro anti-fibrillogenesis test, and using the peptide PrP106-126 in the presence of tetracycline and 14 derivatives, we carried out a three-dimensional quantitative structure-activity relationship (3D-QSAR) study to investigate the stereoelectronic features required for anti-fibrillogenic activity. A preliminary variable reduction technique was used to search for grid points where statistical indexes of interaction potential distributions present local maximum (or minimum) values. Variable selection genetic algorithms were then used to search for the best 3D-QSAR models. A 6-variable model showed the best predictability of the anti-fibrillogenic activity that highlighted the best tetracycline substitution patterns: hydroxyl group presence in positions 5 and 6, electrodonor substituents on the aromatic D-ring, alkylamine substituent at the amidic group in position 2 and non-epi configuration of the NMe2 group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-008-0348-2 | DOI Listing |
Int J Mol Sci
May 2024
Department "Pharmacology, Pharmacotherapy and Toxicology", Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria.
A plethora of pathophysiological events have been shown to play a synergistic role in neurodegeneration, revealing multiple potential targets for the pharmacological modulation of Alzheimer's disease (AD). In continuation to our previous work on new indole- and/or donepezil-based hybrids as neuroprotective agents, the present study reports on the beneficial effects of lead compounds of the series on key pathognomonic features of AD in both cellular and in vivo models. An enzyme-linked immunosorbent assay (ELISA) was used to evaluate the anti-fibrillogenic properties of 15 selected derivatives and identify quantitative changes in the formation of neurotoxic β-amyloid (Aβ42) species in human neuronal cells in response to treatment.
View Article and Find Full Text PDFSpecific proteins found in food sources tend to aggregate into fibrils under heat treatment; studying these aggregation processes and developing tools to control protein heat-induced aggregation is an active area of research. Phthalocyanine complexes are known to exhibit antiprionic and anti-fibrillogenic activity. Thus, the anti-fibrillogenic effect of a series of Zr phthalocyanines with different out-of-plane coordinated ligands, namely positively charged (PcZrLys ), negatively charged (PcZrCitr ), and group able to form disulfide bridges (PcZrS ), on the heat-induced aggregation of such proteins as BLG, insulin, and lysozyme was studied.
View Article and Find Full Text PDFBiomed Pharmacother
September 2021
Department of Chemistry, Faculty of Physical Sciences, Alex-Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria. Electronic address:
Protein fibrillation and oxidative damage are closely associated with the development of many chronic diseases such as Alzheimer's disease, Parkinson's disease and transthyretin amyloidoses. This work aimed at evaluating the fibrillogenic, antioxidant, anti-oxidative, hemolytic and cytotoxic activities of phenolic-rich extract from Chromolaena odorata (L) R.M.
View Article and Find Full Text PDFInt J Biol Macromol
November 2018
Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan. Electronic address:
The 129-residue lysozyme has been shown to form amyloid fibrils in vitro. While methylene blue (MB), a compound in the phenothiazinium family, has been shown to dissemble tau fibril formation, its anti-fibrillogenic effect has not been thoroughly characterized in other proteins/peptides. This study examines the effects of MB on the in vitro fibrillogenesis of lysozyme at pH 2.
View Article and Find Full Text PDFJ Mol Recognit
January 2018
Institute of Molecular Biology and Genetics NASU, Kyiv, Ukraine.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!