A fluorescence microscopic assay for the activity of complement, perforin, and other cytolytic proteins which form transmembrane pores in cellular membranes is described. The assay was worked out and tested with red blood cell membranes (ghosts) and was then applied to intact hemoglobin-free cells. Resealed human erythrocyte ghosts were incubated with complement or perforin. A small polar fluorescent probe (fluorescein-labeled 1-kDa dextran, FD1) which permeates through complement and perforin pores but not through normal cell membranes was added to the samples. The capability of the confocal laser scanning microscope (CLSM) to generate thin optical sections was exploited to visualize and quantitate fluorescence inside single ghosts and thus determine the fraction of ghosts which had become permeable for FD1. The activity of complement or perforin was quantitated by plotting the fraction of permeable cells versus the concentration of the pore-forming protein. The results were in good agreement with those of a conventional hemolytic assay. The CLSM-based assay was then applied to intact hemoglobin-free cells for which only few alternative assays are available. Compared to conventional hemolytic assays for the activity of pore-forming proteins the assay described here can be applied to a large variety of natural and artificial membrane systems. The assay can be performed under nonlysing conditions. Furthermore, the assay is simple, relatively fast, and requires only extremely small amounts of cells and pore-forming proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0003-2697(91)90251-nDOI Listing

Publication Analysis

Top Keywords

complement perforin
20
activity complement
12
perforin cytolytic
8
cytolytic proteins
8
confocal laser
8
laser scanning
8
cell membranes
8
applied intact
8
intact hemoglobin-free
8
hemoglobin-free cells
8

Similar Publications

The complement system is a pivotal component of innate immunity, extensively studied in vertebrates but also present in invertebrates. This study explores the existence of a terminal complement pathway in the tunicate , aiming to understand the evolutionary integration of innate and adaptive immunity. Through transcriptome analysis, we identified a novel transcript, BsITCCP, encoding a protein with both MACPF and LDLa domains-a structure resembling that of vertebrate C9 but with a simpler organization.

View Article and Find Full Text PDF

Objective: This study seeks to elucidate the expression, function, and clinical relevance of the T cell receptor interacting molecule (TRIM) within circulating CD4+T cell subsets in systemic lupus erythematosus (SLE) patients.

Methods: We assessed TRIM expression across distinct subpopulations of human peripheral blood mononuclear cells (PBMCs) through the analysis of publicly available single-cell RNA sequencing data. In addition, TRIM expression was investigated within CD4+T cell subsets of peripheral blood and spleens in mice.

View Article and Find Full Text PDF

Pore-forming aegerolysin and MACPF proteins in extremotolerant or extremophilic fungi.

IUBMB Life

November 2024

Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia.

Aegerolysin proteins are involved in various interactions by recognising a molecular receptor in the target organism. The formation of pores in combination with larger, non-aegerolysin-like protein partners (such as membrane attack complex/perforin proteins [MACPFs]) is one of the possible responses in the presumed competitive exclusion of other organisms from the ecological niche. Bicomponent pairs are already observed at the gene level.

View Article and Find Full Text PDF

Neuromyelitis optica spectrum disorder (NMOSD) is an autoimmune disease of the CNS characterized by the production of disease-specific autoantibodies against aquaporin-4 (AQP4) water channels. Animal model studies suggest that anti-AQP4 antibodies cause a loss of AQP4-expressing astrocytes, primarily via complement-dependent cytotoxicity. Nonetheless, several aspects of the disease remain unclear, including: how anti-AQP4 antibodies cross the blood-brain barrier from the periphery to the CNS; how NMOSD expands into longitudinally extensive transverse myelitis or optic neuritis; how multiphasic courses occur; and how to prevent attacks without depleting circulating anti-AQP4 antibodies, especially when employing B-cell-depleting therapies.

View Article and Find Full Text PDF

New insights into neuropathology and pathogenesis of autoimmune glial fibrillary acidic protein meningoencephalomyelitis.

Acta Neuropathol

February 2024

Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.

Anti-glial fibrillary acidic protein (GFAP) meningoencephalomyelitis (autoimmune GFAP astrocytopathy) is a new autoimmune central nervous system (CNS) disease diagnosable by the presence of anti-GFAP autoantibodies in the cerebrospinal fluid and presents as meningoencephalomyelitis in the majority of patients. Only few neuropathological reports are available and little is known about the pathogenic mechanisms. We performed a histopathological study of two autopsies and nine CNS biopsies of patients with anti-GFAP autoantibodies and found predominantly a lymphocytic and in one autopsy case a granulomatous inflammatory phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!