The endothelium is characterized by a wide range of important homeostatic functions. It participates in the control of hemostasis, blood coagulation and fibrinolysis, platelet and leukocyte interactions with the vessel wall, regulation of vascular tone, and of blood pressure. Many crucial vasoactive endogenous compounds are produced by the endothelial cells to control the functions of vascular smooth muscle cells and of circulating blood cells. These complex systems determine a fine equilibrium which regulates the vascular tone. Impairments in endothelium-dependent vasodilation lead to the so called endothelial dysfunction. Endothelial dysfunction is then characterized by unbalanced concentrations of vasodilating and vasoconstricting factors, the most important being represented by nitric oxide (NO) and angiotensin II (AT II). High angiotensin-converting enzyme (ACE) activity leads to increased AT II generation, reduced NO levels with subsequent vasoconstriction. The net acute effect results in contraction of vascular smooth muscle cells and reduced lumen diameter. Furthermore, when increased ACE activity is chronically sustained, increase in growth, proliferation and differentiation of the vascular smooth muscle cells takes place; at the same time, a decrease in the anti-proliferative action by NO, a decrease in fibinolysis and an increase in platelets aggregation may be observed. AT II is then involved not only in the regulation of blood pressure, but also in vascular inflammation, permeability, smooth muscle cells remodelling, and oxidative stress which in turn lead to atherosclerosis and increased cardiovascular risk. Given the pivotal role exerted by AT II in contributing to alteration of endothelial function, treatment with ACE inhibitors or angiotensin receptor blockers (ARBs) may be of particular interest to restore a physiological activity of endothelial cells. In this view, the blockade of the renin-angiotensin system (RAS), has been shown to positively affect the endothelial function, beyond the antihypertensive action displayed by these compounds. In this review, attention has been specifically focused on an ARB, irbesartan, to examine its effects on endothelial function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2464748 | PMC |
http://dx.doi.org/10.2147/vhrm.2008.04.01.89 | DOI Listing |
Tissue Eng Regen Med
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.
Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.
() is a causative gene for genetic hydrocephalus found in hemorrhagic hydrocephalus () mice. The knockout (KO) rat has subcortical heterotopia with frequent brain hemorrhage as seen in mice. In this study, we report aberrant alpha-smooth muscle actin (α-SMA) expression in the wall of lateral ventricle of the KO rats.
View Article and Find Full Text PDFCell Biosci
January 2025
Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
Epicardium, the most outer mesothelium, exerts crucial functions in fetal heart development and adult heart regeneration. Here we use a three-step manipulation of WNT signalling entwined with BMP and RA signalling for generating a self-organized epicardial organoid that highly express with epicardium makers WT1 and TCF21 from human embryonic stem cells. After 8-days treatment of TGF-beta following by bFGF, cells enter into epithelium-mesenchymal transition and give rise to smooth muscle cells.
View Article and Find Full Text PDFCardiovasc Eng Technol
January 2025
Department of Research and Development, Nonprofit Organization of Research Institute of Life Benefit, Sapporo, Hokkaido, 005-0006, Japan.
Purpose: Dysfunction of vasomotor reactions due to arteriolar smooth muscle causes serious adverse events, such as loss of hemodynamic coherence. This in turn can increase risks of cardiovascular-related diseases. A noninvasive and quantitative evaluation of microvascular disorder is therefore very important for early diagnosis and treatment.
View Article and Find Full Text PDFJ Clin Pathol
January 2025
Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
Aims: Progesterone receptor (PR) is a crucial prognostic marker in breast cancer. However, achieving consistent results in PR immunohistochemistry (IHC) remains challenging due to the lack of well-defined low-positive controls. This study aimed to identify benign tissues with consistent low-level PR expression to serve as ideal controls for IHC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!