We describe a probabilistic peptide fragmentation model for use in protein databank searching and de novo sequencing of electrospray tandem mass spectrometry data. A probabilistic framework for tuning of the model using a range of well-characterized samples are introduced. We present preliminary results of our tuning efforts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447321 | PMC |
http://dx.doi.org/10.1002/cfg.370 | DOI Listing |
J Am Chem Soc
January 2025
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
is a Gram-positive bacterium that is responsible for severe nosocomial infections. The rise of multidrug-resistant strains, which can pose significant health threats, prompts the development of new treatment interventions, and much attention has been directed at the development of prophylactic and therapeutic vaccination strategies. Capsular polysaccharides (CPs) are key protective elements of the cell wall and have been proposed as promising candidate antigens.
View Article and Find Full Text PDFElife
January 2025
Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.
Data-driven models of neurons and circuits are important for understanding how the properties of membrane conductances, synapses, dendrites, and the anatomical connectivity between neurons generate the complex dynamical behaviors of brain circuits in health and disease. However, the inherent complexity of these biological processes makes the construction and reuse of biologically detailed models challenging. A wide range of tools have been developed to aid their construction and simulation, but differences in design and internal representation act as technical barriers to those who wish to use data-driven models in their research workflows.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
Background: Neuroinflammation is one of the essential pathogeneses of cognitive damage suffering from sepsis-associated encephalopathy (SAE). Lots of evidences showed the microglia presented mitochondrial fragmentation during SAE. This study investigated the protective effects and novel mechanisms of inhibiting microglia mitochondrial fragmentation via mitochondrial division inhibitor 1 (Mdivi-1) on cognitive damage in SAE.
View Article and Find Full Text PDFFluids Barriers CNS
January 2025
Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, 760 Press Ave, 124 HKRB, Lexington, KY, 40536-0679, USA.
Background: Blood-brain barrier dysfunction is one characteristic of Alzheimer's disease (AD) and is recognized as both a cause and consequence of the pathological cascade leading to cognitive decline. The goal of this study was to assess markers for barrier dysfunction in postmortem tissue samples from research participants who were either cognitively normal individuals (CNI) or diagnosed with AD at the time of autopsy and determine to what extent these markers are associated with AD neuropathologic changes (ADNC) and cognitive impairment.
Methods: We used postmortem brain tissue and plasma samples from 19 participants: 9 CNI and 10 AD dementia patients who had come to autopsy from the University of Kentucky AD Research Center (UK-ADRC) community-based cohort; all cases with dementia had confirmed severe ADNC.
BMC Pulm Med
January 2025
Tehran Lung Research and Developmental Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Background: This study aims to compare Lung Ultrasound (LUS) findings with High-Resolution Computerized Tomography (HRCT) and Pulmonary Function Tests (PFTs) to detect the severity of lung involvement in patients with Usual Interstitial Pneumonia (UIP) and Non-Specific Interstitial Pneumonia (NSIP).
Methods: A cross-sectional study was conducted on 35 UIP and 30 NSIP patients at a referral hospital. All patients underwent LUS, HRCT, and PFT.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!