Whole genome analysis of a wine yeast strain.

Comp Funct Genomics

Functional Genome Analysis, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 506, Heidelberg D-69120, Germany.

Published: June 2010

Saccharomyces cerevisiae strains frequently exhibit rather specific phenotypic features needed for adaptation to a special environment. Wine yeast strains are able to ferment musts, for example, while other industrial or laboratory strains fail to do so. The genetic differences that characterize wine yeast strains are poorly understood, however. As a first search of genetic differences between wine and laboratory strains, we performed DNA-array analyses on the typical wine yeast strain T73 and the standard laboratory background in S288c. Our analysis shows that even under normal conditions, logarithmic growth in YPD medium, the two strains have expression patterns that differ significantly in more than 40 genes. Subsequent studies indicated that these differences correlate with small changes in promoter regions or variations in gene copy number. Blotting copy numbers vs. transcript levels produced patterns, which were specific for the individual strains and could be used for a characterization of unknown samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447197PMC
http://dx.doi.org/10.1002/cfg.73DOI Listing

Publication Analysis

Top Keywords

wine yeast
16
yeast strain
8
yeast strains
8
laboratory strains
8
genetic differences
8
strains
7
wine
5
genome analysis
4
analysis wine
4
yeast
4

Similar Publications

Microbial safety of black soldier fly larvae (Hermetia illucens) reared on food waste streams.

Waste Manag

January 2025

Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072, Australia; School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, Brisbane, Queensland 4072, Australia.

Black soldier fly larvae (BSFL) can valorise different organic matter and yield a product of high nutritional value. The lack of knowledge about the microbial safety of BSFL grown on different organic waste streams influences the commercialisation of BSFL as stockfeed ingredient. This study evaluates the microbial safety of BSFL grown on five different commercial food waste streams collected from two commercial production facilities.

View Article and Find Full Text PDF

Advanced LC-IMS-MS Protocol for Holistic Metabolite Analysis in Wine and Grape Samples.

Methods Mol Biol

January 2025

Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy.

The final aim of metabolomics is the comprehensive and holistic study of the metabolome in biological samples. Therefore, the use of instruments that enable the analysis of metabolites belonging to various chemical classes in a wide range of concentrations is essential, without compromising on robustness, resolution, sensitivity, specificity, and metabolite annotation. These characteristics are crucial for the analysis of very complex samples, such as wine, whose metabolome is the result of the sum of metabolites derived from grapes, yeast(s), bacteria(s), and chemical or physical modification during winemaking.

View Article and Find Full Text PDF

Untargeted LC-HRMS analyses reveal metabolomic specificities between wine yeast strains selected for their malic acid production.

Food Chem

December 2024

BIOLAFFORT, 11 rue Aristide Berges, 33270 Floirac, France; UMR OENO, Université de Bordeaux, INRAE, INP, BSA, ISVV, 210 Chemin de Leysotte, 33882 Villenave d'Ornon, France. Electronic address:

The alcoholic fermentation of wine is mostly achieved by the species Saccharomyces cerevisiae that display a large variability for their ability to consume or produce malic acid. To better characterize the metabolism of such group of strains we explored their non-volatile metabolome using an untargeted LC-HRMS approach. The chemical classes and the putative structures of several hundred compounds where annotated using MS2 spectra using the SIRIUS software.

View Article and Find Full Text PDF

Microbial fermentation is a primary method by which a variety of foods and beverages are produced. The term refers to the use of microbes such as bacteria, yeasts, and molds to transform carbohydrates into different substances. Fermentation is important for preserving, enhancing flavor, and improving the nutritional quality of various perishable foods.

View Article and Find Full Text PDF

In winemaking, malolactic fermentation (MLF), which converts L-malic acid to L-lactic acid, is often applied after the alcoholic fermentation stage to improve the sensory properties of the wine and its microbiological stability. MLF is usually performed by lactic acid bacteria, which, however, are sensitive to the conditions of alcoholic fermentation. Therefore, the development of wine yeast strains capable of both alcoholic fermentation and MLF is an important task.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!