Electromagnetic analysis of cylindrical cloaks of an arbitrary cross section.

Opt Lett

Institut Fresnel, UMR CNRS 6133, University of Aix-Marseille, Case 162, F13397 Marseille Cedex 20, France.

Published: July 2008

We extend the design of radially symmetric invisibility cloaks through transformation optics as proposed by Pendry et al. [Science 312, 1780 (2006)] to coated cylinders of an arbitrary cross section. The validity of our Fourier-based approach is confirmed by both analytical and numerical results for a cloak displaying a non-convex cross section of varying thickness. In the former case, we evaluate the Green's function of a line source in the transformed coordinates. In the latter case, we implement a full-wave finite-element model for a cylindrical antenna radiating a p-polarized electric field in the presence of a F-shaped lossy object surrounded by the cloak.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.33.001584DOI Listing

Publication Analysis

Top Keywords

arbitrary cross
8
electromagnetic analysis
4
analysis cylindrical
4
cylindrical cloaks
4
cloaks arbitrary
4
cross extend
4
extend design
4
design radially
4
radially symmetric
4
symmetric invisibility
4

Similar Publications

A scalar, harmonic beam-like field possessing an arbitrary number of orbital angular momentum (OAM) components is shown to trace an ellipse, termed here the orbitalization ellipse, at a given transverse cross section and radius, in the space spanned by the spiral OAM basis. The plane and the structure of the ellipse can be readily found by constructing its conjugate semi-diameter vectors from the OAM components.

View Article and Find Full Text PDF

Background: The risks associated with medications and co-medications for chronic pain (CP) can influence a physician's choice of drugs and dosages, as well as a patient's adherence to the medication. High-quality care requires patients to participate in medication decisions. This study aimed to compare perceived risks of medications and co-medications between physicians and persons living with CP.

View Article and Find Full Text PDF

XIS-Temperature: A daily spatiotemporal machine-learning model for air temperature in the contiguous United States.

Environ Res

January 2025

Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel.

The challenge of reconstructing air temperature for environmental applications is to accurately estimate past exposures even where monitoring is sparse. We present XGBoost-IDW Synthesis for air temperature (XIS-Temperature), a high-resolution machine-learning model for daily minimum, mean, and maximum air temperature, covering the contiguous US from 2003 through 2023. XIS uses remote sensing (land surface temperature and vegetation) along with a parsimonious set of additional predictors to make predictions at arbitrary points, allowing the estimation of address-level exposures.

View Article and Find Full Text PDF

Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.

View Article and Find Full Text PDF

In exploiting large propagation delays in underwater acoustic (UWA) networks, the time-domain interference alignment (TDIA) mechanism aligns interference signals through delay-aware slot scheduling, creating additional idle time for improved transmission at the medium access control (MAC) layer. However, perfect alignment remains challenging due to arbitrary delays. This study enhances TDIA by incorporating power allocation into its transmission scheduling framework across the physical and MAC layers, following the cross-layer design principle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!