Mitochondrial transmembrane potential and reactive oxygen species generation regulate the enhanced effect of CCCP on TRAIL-induced SNU-638 cell apoptosis.

J Vet Med Sci

Center for Healthcare Technology Development, College of Veterinary Medicine, Bio-Safety Research Institute, Chonbuk National University, Jeonbuk, South Korea.

Published: June 2008

TRAIL is a member of the tumor necrosis factor family and engages apoptosis via recruitment and rapid activation of caspase-8. This study investigated the effect of carbonyl cyanide m-chlorophenylhydrazone (CCCP), a classic uncoupler of oxidative phosphorylation, on TRAIL-induced apoptosis in SNU-638 cells derived from human gastric cancer cells. It was found that treatment with CCCP followed by incubation with TRAIL markedly enhanced apoptosis by 2 fold compared with treatment with TRAIL alone. This effect was accompanied by reduction in mitochondrial transmembrane potential and generation of reactive oxygen species. This sensitization was inhibited by N-acetyl-l-cysteine, which restored the mitochondrial transmembrane potential and reduced reactive oxygen species generation. Treatment with N-acetyl-L-cysteine also inhibited expression of apoptotic proteins such as Bax and Smac and abrogated caspase-8 activation. Moreover, treatment with N-acetyl-L-cysteine prior to induction with TRAIL increased expression of the anti-apoptotic Bcl-2 protein. These data indicate that CCCP enhanced TRAIL-induced apoptosis by dissipation of mitochondrial transmembrane potential and reactive oxygen species, suggesting that treatment with CCCP combined with that with TRAIL can be an efficient method to induce death of tumor cells, particularly cells that are resistant to TRAIL-induced apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1292/jvms.70.537DOI Listing

Publication Analysis

Top Keywords

mitochondrial transmembrane
16
transmembrane potential
16
reactive oxygen
16
oxygen species
16
trail-induced apoptosis
12
potential reactive
8
species generation
8
treatment cccp
8
treatment n-acetyl-l-cysteine
8
apoptosis
6

Similar Publications

Roles of oolong tea extracts in the protection against Staphylococcus aureus infection in Caenorhabditis elegans.

J Food Sci

January 2025

Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China.

Oolong tea, a popular traditional Chinese tea, possesses various bioactivities, but little is known about its roles in the protection against pathogens, such as Staphylococcus aureus, in vivo. This study investigated the roles of the water-soluble oolong tea extracts (OTE) on S. aureus infection in Caenorhabditis elegans, a promising model to study the host-microbe interactions in vivo.

View Article and Find Full Text PDF

The Unexplored Role of Connexin Hemichannels in Promoting Facioscapulohumeral Muscular Dystrophy Progression.

Int J Mol Sci

January 2025

Programa de Comunicación Celular en Cáncer, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7550000, Chile.

DUX4 is typically a repressed transcription factor, but its aberrant activation in Facioscapulohumeral Muscular Dystrophy (FSHD) leads to cell death by disrupting muscle homeostasis. This disruption affects crucial processes such as myogenesis, sarcolemma integrity, gene regulation, oxidative stress, immune response, and many other biological pathways. Notably, these disrupted processes have been associated, in other pathological contexts, with the presence of connexin (Cx) hemichannels-transmembrane structures that mediate communication between the intracellular and extracellular environments.

View Article and Find Full Text PDF
Article Synopsis
  • The transmembrane potential is crucial for cellular functions like signaling and energy production, with Rhodamine voltage reporters (RhoVRs) serving as small, non-invasive sensors that can detect voltage changes, especially in mitochondria.
  • Extensive simulations and free-energy calculations revealed that the orientation of RhoVRs relative to membranes, influenced by their polarized functional groups, significantly impacts their voltage sensitivity and localization within cells.
  • The study's findings on the relationship between the chemical structure of RhoVRs and their membrane behavior offer valuable insights for designing fluorescent dyes that better detect voltage changes.
View Article and Find Full Text PDF

BRAF inhibitors (BRAFi) represent a cornerstone in melanoma therapy due to their high efficacy. However, the emergence of resistance causes a significant challenge to their clinical utility. This study aims to investigate the potential of diclofenac as a sensitizer for BRAFi therapy in melanoma and to elucidate its underlying mechanism.

View Article and Find Full Text PDF

Mitochondrial carriers transport organic acids, amino acids, nucleotides and cofactors across the mitochondrial inner membrane. These transporters consist of a three-fold symmetric bundle of six transmembrane α-helices that encircle a pore with a central substrate binding site, whose alternating access is controlled by a cytoplasmic and a matrix gate (C- and M-gates). The C- and M-gates close by forming two different salt-bridge networks involving the conserved motifs [YF][DE]XX[KR] on the even-numbered and PX[DE]XX[KR] on the odd-numbered transmembrane α-helices, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!