LETM1 is located in the chromosomal region that is deleted in patients suffering Wolf-Hirschhorn syndrome; it encodes a homolog of the yeast protein Mdm38 that is involved in mitochondrial morphology. Here, we describe the LETM1-mediated regulation of the mitochondrial volume and its interaction with the mitochondrial AAA-ATPase BCS1L that is responsible for three different human disorders. LETM1 is a mitochondrial inner-membrane protein with a large domain extruding to the matrix. The LETM1 homolog LETM2 is a mitochondrial protein that is expressed preferentially in testis and sperm. LETM1 downregulation caused mitochondrial swelling and cristae disorganization, but seemed to have little effect on membrane fusion and fission. Formation of the respiratory-chain complex was impaired by LETM1 knockdown. Cells lacking mitochondrial DNA lost active respiratory chains but maintained mitochondrial tubular networks, indicating that mitochondrial swelling caused by LETM1 knockdown is not caused by the disassembly of the respiratory chains. LETM1 was co-precipitated with BCS1L and formation of the LETM1 complex depended on BCS1L levels, suggesting that BCS1L stimulates the assembly of the LETM1 complex. BCS1L knockdown caused disassembly of the respiratory chains as well as LETM1 downregulation and induced distinct changes in mitochondrial morphology.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.026625DOI Listing

Publication Analysis

Top Keywords

respiratory chains
12
letm1
11
mitochondrial
11
mitochondrial protein
8
mitochondrial tubular
8
aaa-atpase bcs1l
8
mitochondrial morphology
8
letm1 downregulation
8
mitochondrial swelling
8
letm1 knockdown
8

Similar Publications

Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells (QDSSCs) offer a promising alternative due to their stability, low cost, and high-power conversion efficiency (PCE) compared to other third-generation solar cells.

View Article and Find Full Text PDF

Mitochondria from harbor a branched electron-transport chain containing a proton-pumping Complex I NADH dehydrogenase and three Type II NADH dehydrogenases (NDH-2). To investigate the physiological role, localization and substrate specificity of these enzymes, the growth of various NADH dehydrogenase knockout mutants was quantitatively characterized in shake-flask and chemostat cultures, followed by oxygen-uptake experiments with isolated mitochondria. NAD(P)H:quinone oxidoreduction of the three NDH-2 were individually assessed.

View Article and Find Full Text PDF

Metal-Organic Frameworks (MOFs) attract attention for their intrinsic porosity, large surface area, and functional versatility. To fully utilize their potential in applications requiring precise control at smaller scales, it is essential to overcome challenges associated with their bulk form. This is particularly difficult for 3D MOFs with spin crossover (SCO) behavior, which undergo a reversible transition between high-spin and low-spin states in response to external stimuli.

View Article and Find Full Text PDF

Deciphering the molecular basis of lipoprotein recognition and transport by LolCDE.

Signal Transduct Target Ther

December 2024

Department of Laboratory Medicine, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.

Outer membrane (OM) lipoproteins serve vital roles in Gram-negative bacteria, contributing to their pathogenicity and drug resistance. For these lipoproteins to function, they must be transported from the inner membrane (IM), where they are assembled, to the OM by the ABC transporter LolCDE. We have previously captured structural snapshots of LolCDE in multiple states, revealing its dynamic conformational changes.

View Article and Find Full Text PDF

Curcumin reverses high-level tigecycline resistance mediated by different mechanisms in Gram-negative bacteria.

Phytomedicine

December 2024

College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan Province, PR China; Henan Province Key Laboratory of Animal Food Pathogens SurveillancePR China. Electronic address:

Background: Tigecycline is one of the few effective treatments for multidrug-resistant bacteria. However, the recent emergence and spread of high-level tigecycline resistance in Enterobacteriaceae have significantly limited its clinical use. To combat this challenge, combining antibiotics with adjuvants has emerged as a promising strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!