Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The temperature induced melting transition of a self-complementary DNA strand covalently attached at the 5' end to the surface of a gold interdigitated microelectrode (GIME) was monitored in a novel, label-free, manner. The structural state of the hairpin was assessed by measuring four different electronic properties of the GIME (capacitance, impedance, dissipation factor and phase angle) as a function of temperature from 25 degrees C to 80 degrees C. Consistent changes in all four electronic properties of the GIME were observed over this temperature range, and attributed to the transition of the attached single-stranded DNA (ssDNA) from an intramolecular, folded hairpin structure to a melted ssDNA. The melting curve of the self-complementary single strand was also measured in solution using differential scanning calorimetry (DSC) and UV absorbance spectroscopy. Temperature dependent electronic measurements on the surface and absorbance versus temperature values measured in solution experiments were analyzed assuming a two-state process. The model analysis provided estimates of the thermodynamic transition parameters of the hairpin on the surface. Two-state analyses of optical melting data and DSC measurements provided evaluations of the thermodynamic transition parameters of the hairpin in solution. Comparison of surface and solution measurements provided quantitative evaluation of the effect of the surface on the thermodynamics of the melting transition of the DNA hairpin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2528165 | PMC |
http://dx.doi.org/10.1093/nar/gkn436 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!