Cadmium pathology in an insect cell line: ultrastructural and biochemical effects.

Tissue Cell

Department of Biochemistry, Physiology and Microbiology, University of Ghent, Ledeganckstraat 35, Ghent, B-9000, Belgium.

Published: February 1999

Cadmium (Cd) pathology was studied in an insect cell line (Aedes albopictusC6/36) at the ultrastructural level. The most prominent pathological changes occurred at the level of the nucleus: chromatin clumping, indentations, filling and dilatation of the perinuclear cisternae and an increased amount of bound ribosomes were observed. In the cytoplasm, condensation and swelling of mitochondria, increase of both free and membrane-bound ribosomes, filling and dilatation of the rough endoplasmic reticulum, and increase of the lysosomal system were the most conspicuous effects. The increased content of the perinuclear and cytoplasmic cisternae was probably due to an increased protein synthesis or a disturbance of the protein export system. This picture differed clearly from the osmotically swollen electron-lucent cisternae that have been described in other pathological situations. The enhancement of the lysosomal system was paralleled by a slight but significant stimulation of the acid phosphatase activity in the sublethal Cd concentration range. In vitro experiments suggested that Cd probably acts directly on this enzyme. Abnormal medium acidification in cultures treated with low Cd levels was correlated with an increased production of lactic acid. Together with the morphological data, this suggested a Cd-induced impairment of the aerobic metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1054/tice.1998.0019DOI Listing

Publication Analysis

Top Keywords

cadmium pathology
8
insect cell
8
filling dilatation
8
cisternae increased
8
lysosomal system
8
pathology insect
4
cell ultrastructural
4
ultrastructural biochemical
4
biochemical effects
4
effects cadmium
4

Similar Publications

Current chelation treatments used for cadmium poisoning may cause some serious side effects. Thus, safer novel treatments could be promising for clinical use. This study evaluated the effects of cannabidiol on Cd toxicity.

View Article and Find Full Text PDF

The rising production and improper disposal of titanium dioxide nanoparticles (TiO NPs) into aquatic systems present considerable environmental challenges, especially when these particles interact with other contaminants such as cadmium (Cd). Thus, the current study aimed to evaluate the potential toxic effects on the gills, chondrocranium, body growth, and mortality of Aquarana catesbeiana tadpoles. The tadpoles were exposed to environmentally relevant concentrations of TiO NPs (10 µg L), and CdCl (10 µg L), both individually and in combination, for 30 days (chronic exposure), along with a control group.

View Article and Find Full Text PDF

Background: Cadmium (Cd), classified as an International Agency for Research on Cancer (IARC) Group 1 human carcinogen, is present in cigarette smoke. Recent studies have illustrated the potential role of genetics in influencing Cd biomarker levels.

Methods: We conducted a genome-wide association study (GWAS) of urinary Cd levels in 1977 current smokers from the Multiethnic Cohort Study, comprising participants from five different racial and ethnic groups.

View Article and Find Full Text PDF

Astragaloside IV attenuates cadmium induced nephrotoxicity in rats by activating Nrf2.

Sci Rep

January 2025

Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, (Third Military Medical University), Chongqing, China.

Acute kidney injury (AKI) has become a disease of global concern due to its high morbidity and mortality. This has highlighted the need for renoprotective agents. Astragaloside IV (AS-IV) is a saponin isolated from Astragalus membranaceus with good antioxidant, anti-inflammatory and anti-tumor properties.

View Article and Find Full Text PDF

Cadmium (Cd) is a widely available metal that has been found to have a role in causing nonalcoholic fatty liver disease (NAFLD). However, the detailed toxicological targets and mechanisms by which Cd causes NAFLD are unknown. Therefore, the present work aims to reveal the main targets of action, cellular processes, and molecular pathways by which cadmium causes NAFLD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!