Specific residues in the N-terminal domain of FimH stimulate type 1 fimbriae assembly in Escherichia coli following the initial binding of the adhesin to FimD usher.

Mol Microbiol

Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain.

Published: August 2008

Type 1 fimbriae are assembled by the chaperone-usher pathway where periplasmic protein complexes formed between fimbrial subunits and the FimC chaperone are recruited by the outer membrane protein FimD (the usher) for their ordered polymerization and export. FimH adhesin initiates and stimulates type 1 fimbriae polymerization by interacting with FimD. Previously we showed that the N-terminal lectin domain of FimH (N-FimH) is necessary for binding of the adhesin to FimD. In this work, we have selected mutants in N-FimH that reduce the levels of adhesin and type 1 fimbriae displayed in Escherichia coli without altering the levels of FimH in the periplasm. The selected mutations are mostly concentrated in residues G15, N46 and D47. In contrast to other mutations isolated that simply affect binding of FimH to FimD (e.g. C3Y), these variants associate to FimD and alter its susceptibility to trypsin digestion similarly to wild-type FimH. Importantly, their mutant phenotype is rescued when FimD is activated in vivo by the coexpression of wild-type FimH. Altogether, these data indicate that residues G15, N46 and D47 play an important role following initial binding of FimH to FimD for efficient type 1 fimbriae polymerization by this outer membrane usher.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.2008.06325.xDOI Listing

Publication Analysis

Top Keywords

type fimbriae
20
fimh
8
domain fimh
8
escherichia coli
8
initial binding
8
binding adhesin
8
fimd
8
adhesin fimd
8
fimd usher
8
outer membrane
8

Similar Publications

A Phage-Based Approach to Identify Antivirulence Inhibitors of Bacterial Type IV Pili.

Microb Biotechnol

January 2025

Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.

The increasing threat of antibiotic resistance underscores the urgent need for innovative strategies to combat infectious diseases, including the development of antivirulants. Microbial pathogens rely on their virulence factors to initiate and sustain infections. Antivirulants are small molecules designed to target virulence factors, thereby attenuating the virulence of infectious microbes.

View Article and Find Full Text PDF

Two-component system GrpP/GrpQ promotes pathogenicity of uropathogenic Escherichia coli CFT073 by upregulating type 1 fimbria.

Nat Commun

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China.

Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infections (UTIs). Invasion into bladder epithelial cells (BECs) on the bladder luminal surface via type 1 fimbria is the first critical step in UPEC infection. Although type 1 fimbria expression increases during UPEC invasion of BECs, the underlying regulatory mechanisms remain poorly understood.

View Article and Find Full Text PDF

The effect of consumption of cranberry on adherence to feline uroepithelial cells in a blind randomised cross-over trial in cats.

J Vet Res

December 2024

Equipe de Recherche sur les Relations Matrice Extracellulaire-Cellule (ERRMECe) Laboratory, Site de St-Martin, CY Cergy Paris University, 95302 Cergy-Pontoise, France.

Introduction: is the most common uropathogen in humans, dogs and cats. Dietary consumption of cranberry () is known to be associated with a reduction in uropathogenic (UPEC) adhesion to human and canine urinary epithelial cell lines, but this has not been shown in cats.

Material And Methods: Six neutered domestic cats, one male and five females, were randomly fed three diets successively, one containing 0.

View Article and Find Full Text PDF

A critical step in infections is the attachment of many microorganisms to host cells using lectins that bind surface glycans, making lectins promising antimicrobial targets. Upon binding mannosylated glycans, FimH, the most studied lectin adhesin of type 1 fimbriae in , undergoes an allosteric transition from an inactive to an active conformation that can act as a catch-bond. Monoclonal antibodies that alter FimH glycan binding in various ways are available, but the mechanisms of these antibodies remain unclear.

View Article and Find Full Text PDF

Structure of the Pseudomonas aeruginosa PAO1 Type IV pilus.

PLoS Pathog

December 2024

Structural Studies Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom.

Type IV pili (T4Ps) are abundant in many bacterial and archaeal species, where they play important roles in both surface sensing and twitching motility, with implications for adhesion, biofilm formation and pathogenicity. While Type IV pilus (T4P) structures from other organisms have been previously solved, a high-resolution structure of the native, fully assembled T4P of Pseudomonas aeruginosa, a major human pathogen, would be valuable in a drug discovery context. Here, we report a 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!