Various combinations of density functionals and pseudopotentials with associated valence basis-sets are compared for reproducing the known solid-state structure of [V 2O 2(OO) 2 l-lact 2] (2-) cis . Gas-phase optimizations at the B3LYP/SBKJC level have been found to provide a structure that is close to that seen in the solid state by X-ray diffraction. Although this may result in part from error compensation, this optimized structure allowed satisfactory reproduction of solution multinuclear NMR chemical shifts of the complex in all-electron DFT-IGLO calculations (UDFT-IGLO-PW91 level), suggesting that it is probably close to that found in solution. This combination of approaches has subsequently been used to optimize the structures of the vanadium oxoperoxo complexes [V 2O 3(OO) l-lact 2] (2-) cis , [V 2O 3(OO) l-lact 2] (2-) trans , and [VO(OO)( l-lact)(H 2O)] (-) cis . The (1)H, (13)C, (51)V, and (17)O NMR chemical shifts for these complexes have been calculated and compared with the experimental solution chemical shifts. Excellent agreement is seen with the (13)C chemical shifts, while somewhat inferior agreement is found for (1)H shifts. The (51)V and (17)O chemical shifts of the dioxo vanadium centers are well reproduced, with differences between theoretical and experimental shifts ranging from 22.9 to 35.6 ppm and from 25.1 to 43.7 ppm, respectively. Inferior agreement is found for oxoperoxo vanadium centers, with differences varying from 137.3 to 175.0 ppm for (51)V shifts and from 148.7 to 167.0 ppm for (17)O(oxo) shifts. The larger errors are likely to be due to overestimated peroxo O-O distances. The chosen methodology is able to predict and analyze a number of interesting structural features for vanadium(V) oxoperoxocomplexes of alpha-hydroxycarboxylic acids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic800405x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!